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1 INTRODUCTION TO THE LAND-USE EVOLUTION AND IMPACT 
ASSESSMENT MODEL (LEAM) 

1.1 Overview 
The Land-Use Evolution and impact Assessment Model (LEAM) utilizes the 

STELLA/SME/GIS collaborative environment for the purpose of developing a Planning 
Support System (PSS) to generate and evaluate human development patterns.  Developed 
at the University of Illinois with funding from the National Science Foundation, LEAM 
describes land-use changes across a landscape that result from the spatial and dynamic 
interaction among economic, ecological, and social systems in the region.  In the LEAM 
approach, groups or individuals who have substantive knowledge relating to a particular 
system develop and test separate models of that system.  These contextual sub-models are 
linked and run simultaneously in each grid cell of a set of raster-based GIS map(s) to 
form the main framework of the dynamic spatial model (LEAM).   

The SME collaborative approach enables the model to be created in an open and dis-
tributed manner that brings different expertise to bear on the problem.  Inputs to the 
model utilize national land-use data sets (at 30 x 30 meter resolution), census and eco-
nomic data (readily available and transportable for application to multiple sites) along 
with variables relating to impact assessment sub-models (e.g., habitat, ecoregional inputs, 
water and energy inputs) to set model parameters.  The products of LEAM model runs 
are analyses of a series of policy scenarios, presented as GIS maps or movies that show 
the transformation of the subject landscape as a product of policy related inputs.  These 
dynamic visual outputs are beneficial for testing policy scenarios and raising concerns 
regarding the impacts of development, environmental degradation, or conflicting land-use 
policies (George 1997).  The final PSS tool will include a simple user interface and trans-
portable data sets for application to multiple sites.   

Figure 1-1 describes the fundamental LEAM approach to capturing land-use trans-
formation dynamics.  It begins with land-use transformation drivers.  These drivers cap-
ture the forces (typically human) that contribute to urban land-use transformation deci-
sions.  The model drivers describe land-use transformation probabilities.  The simulation 
visually displays the landscape transformation realized at each time-step using scenario 
based planning exercises.  The resulting visual images are then analyzed for environ-
mental impacts during the impact assessment phase.  Sustainable indices based on the 
derived impacts are then developed to feed back into the model drivers.  
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Figure 1-1.  The LEAM spatial modeling environment. 

1.2 Land-Use Transformation Drivers 
A simple illustration of the simulation engine can be viewed in Figure 1-2.  The 

LEAM model uses a 30 m x 30 m raster-based GIS land-use map based on the USGS Na-
tional Land use Classification System (NLCD MAP).  The NLCD maps are used to set 
the existing land-use conditions; the model uses a 30 x 30 m resolution to simulate socio-
economic parcel-by-parcel decision making that influence urban growth patterns.  A 
STELLA model then calculates the development probability (DEV PROBABILITY) for 
each cell, at each time step.  The probability of a cell changing from its existing condition 
(LU A) to an alternate land use (LU B) is dependent on the CHANGE variable and its 
associated probability of change (DEV PROBABILITY) that has been calculated at each 
time step.  Whether or not a cell transforms depends on how the conditions for change in 
the immediate (as well as global) area of study have been calculated using a Markov 
chain approach.  
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Figure 1-2.  A simplified STELLA transformation model.  The stock variable LU A is initialized by 
USGS data layers (NLCD MAP) the change of stock LU A to stock LU B is dependent on the CHANGE 
variable and its associated probability of change (DEV PROBABILITY) calculated at each time step. 

A Markov chain is a collection of variables having the property that, given the pre-
sent, the future is conditionally independent of the past.  A simple random walk, or a se-
quence of steps of fixed length is a good analogy.  It is used here to describe the behavior 
of transition probabilities among a system’s states.  The process considers the different 
states that any particular cell in the modeled landscape can assume and the statistical 
probabilities that govern the transition of the phenomenon from one state to another.  In 
the LEAM approach, any developable cell in the landscape has a probability of land-use 
change.  The calculation of the cell’s probability is based on a set of criteria that is evalu-
ated by the model at each time step (see probability indices below).  Each variable con-
sidered in the chain affects the final transformation probability ( P  at time t) of land-use 
change dependent upon the sub model indice probabilities ( pi ) present and their weight-
ing coefficients (wi ).   

The summation of indices and their coefficients provides: 

Pt = wipi
i=1

n

∑ ,  

where 0 ≤ pi ≤1 and wi = 1
i=1

n

∑ . 

This approach is conceptually simple and proportional influences can be easily dis-
tributed among drivers.  This makes for easy access and discussions with stakeholders.  A 
major weakness with this approach however, is that transformation cannot be forbidden 
(e.g. if slopes are significantly high, or soil particularly unsuitable, development cannot 
occur).  A logical statement that can accommodate an on/off characteristic is needed to 
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simulate cells that cannot develop.  So that if a characteristic is true set 0=P , otherwise 
use the original equation.  This might be expressed as: 

IF  ∪
m

j
jq

1=

∀ ; THEN 0=P ; ELSE Pt = kt wipi
i=1

n

∑   

Here: TRUEqi =  in exclusive areas — steep slopes, protected areas, lakes/rivers 
etc.; tk  is a growth function introduced to determine how well the model is 

conforming to the household population projection curve generated by an 
economic model (explained below).   

During each time step of the simulation, projected results are compared with simu-
lated activity.  If there is a surplus of households in the simulation, the model corrects by 
reducing the growth function, slowing the construction of new units.  If there is a short-
fall of units, the model increases the growth function to correct the shortfall.  This self-
modification function keeps the projected households in line with projections and is a 
global variable that doesn’t vary from cell to cell, but will vary with each time step. 

The current LEAM probability indices ( pi ) include: 

ni  – neighboring land-use characteristics index 
uti – utility resource availability index 
rci  – random chance of land-use change (spontaneity) index 
demi  – geographic constraints index 
lpi  – price considerations index 
eci  – economic considerations index 
tri  – transportation related influences index 
sci  – social systems influences index 
gti  – sub regional growth trends index 

This can be described (for any time t) as: 

Pt = kt(αnt + βutt + χrct +δdemt + εlpt +φect +ϕtrt +γsct +ηgtt ...) 

At each time step the Pt  is calculated for each cell in the study area for each of three 
distinct categorical possibilities: residential land uses ( Rj Pt ), commercial/industrial land 
uses (CIjPt), or set aside open space (OPjPt ) (Figure 1-3 is a simple illustration of trans-
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formation model Figure1-4 is an example of a probability map based on the equation 
above).   Categorical probabilities are compared to determine the land use with the high-
est probability for success in that cell (CgiPt ) so that:   

CgiPt = RjPt ;CIjPt ;OPjPt  

The selected iCg  is then compared with the probability that no change will occur 
( Exj Pt ): 

CgiPt ; Ex jPt . 

 

 
Figure 1-3.  The simplified STELLA transformation model with land-use change category determina-
tion (RESIDENTIAL, COMM INDUST, or OPENSPACE). 

This determines the final outcome for each cell.  If CgiPt < Exj Pt , then the cell in 
question remains as existing.  If CgiPt > Exj Pt , then the cell in question transforms into 
the selected categorical land use (CgiPt ) (residential land uses; commercial/industrial 

land uses; or open space). 
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Figure 1-4.  Example of a Probability Map.  This shows the probability of residential development 
in year 1 of a simulation for the Peoria metropolitan region.  Red indicates areas with a high 
probability of development, green areas have a low probability, black areas represents areas 
that have already developed or will not develop (water bodies, protected areas). 

 

Each driver (or index - pi ) is developed as a sub-model; definitions are completed 

and run independently of the larger LEAM organization (Figure 1-5).  Variables of inter-
est can be scaled and plotted in formats that help visualize sub-model behavior and con-
textual experts can calibrate and test sub-model behavior before it becomes integrated 
into the larger model.  Using iconographic modeling techniques for sub-model develop-
ment greatly decreases the learning curve for enabling contextual experts; it also in-
creases the ease with which the model can be changed and calibrated.  The effects of 
changes made can be viewed immediately; allowing the user to concentrate on modeling 
instead of computational details (Maxwell, Villa et al. 1999).  
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Figure 1-5.  The LEAM distributed design approach.  Each sub-model is developed independently by 
subject matter experts, and then incorporated into the larger LEAM framework. 

LEAM is a complex system of interrelated sub-models that requires a wide range of 
expertise to create.  Although contextual experts need not agree on all things, all sub-
models must conform to some fundamental characteristics: they must ultimately relate to 
and produce a probability of land-use change, and they must be contextually valid.  The 
contextual expert responsible for sub-model development completes calibration and veri-
fication before it is included into the LEAM framework.  This first pass at verification 
insures each sub-model is accurately based on published and recognized literature.  For 
example, the economist must verify and calibrate the economic sub-model using uncer-
tainty analysis typically applied to economics modeling systems or incorporate a pub-
lished econometric model that is recognizable in its new environment.  This is a proc-
essed-based approach that does not address variable-to-variable interaction, but it can be 
an effective means of controlling interoperable and external validity.  For more detail on 
LEAM sub-model drivers see Appendix A. 

1.3 Alternative What-If Scenarios 
LEAM drivers represent the dynamic interactions between the urban system and the 

surrounding landscape, and scenario maps visually represent the resulting land-use 
changes.  Altering input parameters (policies) changes the spatial outcome of the scenario 
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being studied.1  This functionality enables what-if planning scenarios that can be visually 
examined and interpreted for each simulation exercise.  Results of a preliminary LEAM 
simulation can be seen on the landscape sample in Figure 1-6.  The landscape shown is in 
digital elevation format and the cell transformations are shown in the cell colors as the 
cells develop over time (darker purple represents a waterway).  The newly developed 
cells represent one of three driver types: spontaneous growth, diffusive growth, and or-
ganic growth.  

 
Figure 1-6.  A preliminary LEAM scenario of four sample growth characteristics — initial urban land 
uses, spontaneous growth, diffusive growth, and organic growth. 

An alternative scenario may include the construction of a new road in the area being 
studied.  Results of the preliminary LEAM output with a new road system added (Error! 
Reference source not found.7) show how the land-use transformation patterns may vary 
with the road system added. In this case the planning decision to revise the transportation 
network in the area has dramatically changed the way the region has developed over a 
similar time period. 
                                                       
1 Similar what-if inputs generate similar output, although not identical due to stochastic influences in the 

model. 

Deleted: Figure 1-
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Figure 1-7.  An alternative LEAM scenario that incorporates a new road network.  In contrast to Fig-
ure 1-6, note the increase in development and the changing patterns of development due to addition 
of roads. 

 
LEAM projects in Kane County, the Peoria Tri-County region, the St. Louis MO-IL 

region, and several other regions have led to variety of different scenarios being run in 
LEAM – most scenarios are focused on public policy or large public investments.  Ex-
amples of scenarios include:  transportation investments, agriculture and forest preserva-
tion, development or redevelopment incentives for specific areas of a region, closure of 
major manufacturing or military base, and implementation of a comprehensive plan. .  

1.4 LEAM Modeling Utility 
The approach taken in developing LEAM has attempted to address at least four limi-

tations of current urban transformation modeling:   
• Lack of substantive theoretical explanations for the sustainability of complex ur-

ban systems. 
• Weakness inherent in the single-programmer approach and the related difficulties 

in assessing underlying model logic. 
• Difficulties associated with scaling-up models to large regions. 
• Lack of feedback and support for ‘so-what’ questions associated with changes in 

urban patterns. 
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The approach to addressing these shortcomings includes the following.  First, its theo-
retical foundations are derived from the ideas and theories posited by scholars in the Ur-
ban Ecology movement.  Urban Ecologists emphasize that methods utilized in the study 
of ecology may be ‘profitably applied’ to the analysis of the human community (Park, 
Burgess et al. 1925).  In this view, ecological theories provide clues to the way in which 
urban systems function and provide methodological characterizations for modeling urban 
systems.  This implies that new theories of ecology – hierarchical patch dynamics, incor-
poration, equilibrium, and diversity theory can help to inform urban transformation mod-
els by providing the underlying logic for establishing causal linkages, dynamic driver in-
teractions, spatial resolution and uncertainty analysis, impact assessment measures, and 
sustainability criteria.  Unlike existing transformation models that rarely incorporate sub-
stantive theoretical explanations for the urban systems patterns they describe, sub-models 
developed within LEAM are based on theoretical or empirical explanations for the phe-
nomenon being modeled. 

Next, the model logic underlying LEAM is explicitly stated and easy to assess.  In the 
LEAM approach, groups or individuals who have substantive knowledge relating to a 
particular system develop and test separate models of that system.  These systems are ex-
plicitly and separately modeled in an open and distributed manner that is easily assessed.  
The contextual sub-models are then linked within the main framework of a dynamic 
model, and these relationships are also open to inspection and critique.  The LEAM ap-
proach enables a broad-based, multi-disciplinary approach to problem solving. 

Third, the LEAM approach can be implemented in massively parallel computing en-
vironments and is very amenable to scaling up to large regions.  In such computing envi-
ronments, a large study area is split into smaller, distinct and computationally more man-
ageable regions.  The model is computed on a separate processor for each of these 
smaller regions for each time step, and these results are then stitched together to form the 
aggregate output for the large area.  Thus, LEAM simulations can be run on a single plat-
form, a heterogeneous distributed network of platforms, or on massively parallel super-
computers.  LEAM simulations have been run in reasonable time (20 minute duration) for 
an eight-county region consisting of 10 million 30 x 30 m cells using a massively parallel 
supercomputer.  

Finally, and perhaps most importantly, the products of LEAM modeling runs can help 
to answer the critical ‘so-what’ questions associated with changes in urban patterns.  Im-
pact assessment models, developed in the same way drivers are modeled – using 
STELLA/SME, can explicate the environmental, economic, and social ramifications for 
each scenario.  This enables policy related decisions to be simulated and assessed with 
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feedback on the (positive or negative) consequences of these decisions.  Various com-
mentators have attributed both negative and positive impacts to human development pat-
terns. The long-standing debate on the types, magnitudes and incidence of development 
costs weighs down the prospects for reaching consensus.  Without substantive impact as-
sessments, models of urban systems dynamics offer limited insight to decision makers on 
issues of community stability, sustainability and the sustainability of community planning 
practices.   
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2    LEAM SUB-MODEL DRIVERS 
 
When developing the overall developmental probability ( Pt ), some factors are multi-

plicative and some additive. The relational developmental probability of each model 
driver is calculated independently and is based on regionally specific data sets.   A sector-
by-sector description follows. 

 
Neighboring Cell Index 

The Neighboring Cell Sector works on the principle of adjacency.  Cells that are adja-
cent to developed cells have an increased pt .  Existing urbanized cells embody access to 

utility infrastructure and are easier and cheaper to develop.  The more neighboring cells 
developed the greater the probabilistic influence (Figure 2-1). 

 

 
Figure 2 - 1.  Npr  as a function of neighboring development. 

 
The determination of the Npr  at any given time step (dt ) for any given cell ( j ) re-

quires a summation of the neighboring cell characteristics with a spread coefficient (σj) 
over the total surrounding cells. The inclusion of the spread coefficient enables regionally 
specific data to be used within the model parameters that will more closely resemble re-
gional spread and pattern structure.    

Nprjdt =
(Npr +σ j

8

1

∑ )

8
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Figure 2 - 2.  Npr  as a function of neighborhood cell characteristics.  Developed neighboring cells 

influence the neighborhood index value used to determine the overall Pt  for each cell. 

 
Neighboring cell characteristics are also important for determining categorical prob-

abilities (CgiPt ).  Neighboring categorical relationships can be positive - residential de-
velopment adjacent to open space ( Rj ;OPj ); negative - residential development adjacent 
to commercial/industrial development ( Rj ;CIj ); or neutral - commercial/industrial devel-
opment adjacent to open space (CIj ;OPj ). 

Although currently somewhat simplistic, the conceptual basis for this sub-model can 
be enhanced to provide more detailed information about each neighbor to improve the 
reliability of the simulation.  For example, a highly priced residential cell can influence 
the price of subsequent cell development.  Adjacent cells may be more attractive for 
highly priced residential development, but less attractive for more moderately priced de-
velopments.  

Another important consideration is the scale in which fringe development usually oc-
curs.  Typical developments are larger tracts that are subdivided and built up as the mar-
kets permit.  These tracts are not always contiguous, and the patterns may ‘leap-frog’ 
from tract to tract (Figure 2-3). 

 
 
 
 

Npr j 

Npr 1= 1 Npr 2= 1 Npr 3= 0 

Npr 4= 0 Npr 5= 0 

Npr 6= 0 Npr 7= 0 Npr 8= 1 
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1 2 3 4 5  

Figure 2 - 3.  Typical urban fringe development patterning (left-right).  Open space (1) be-
comes developed into large tracts with the beginnings of smaller sub-tracts and model 
structures (2). Structure slowly builds into the new development as new home buyers be-
come aware of the region (3), which prompts new sub-tracts to open.  Rapid development 
soon begins and new large tracts appear that are not necessarily contiguous (4).  As the 
initial development fills, adjacent development begins and the process continues. 
 

The hierarchical and fractal nature of fringe urban patterns is difficult to replicate 
without intensive data collection efforts to determine ownership boundaries.  Ownership 
data are not yet common in geospatial formats and are generally unavailable (although 
some county assessors are now beginning the process of geo-coding data sets).  If the 
data are available, the cost is very high both from a fiscal and computational perspective.  
In the LEAM approach clustering and leapfrogging patterns are simulated using attrac-
tiveness coefficients (in the utilities resource (uti ) model and random assignments (rci ) 

(see Figure 2-5 and Figure 2-8).  
 

Utilities Index 
The Utilities Sector is based on proximity and access to utilities and infrastructure as 

a means to determine the likelihood of land-use transformation.  The presence (or ab-
sence) of utilities at or near a site influences its probability of development by altering the 
effective development costs (Granger and Blomquist 1999).  A probabilistic modeling 
technique has been developed to expose non-adjacent cells to the presence of available 
utilities and resources at a site.  The closer an undeveloped cell is to resource utilities the 
greater the influence on the probability of development (Granger and Blomquist 1999) 
(Figure 2-4).  This enables non-adjacent cells to urbanize, simulating a skipping ‘sprawl’ 
type pattern.  This pattern is most notably found in geographic regions with little geo-
graphic constraints (rivers, mountains, elevation change) to growth and that have favor-
able resources available in the community to facilitate growth (economic strength).   
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Figure 2 - 4.  The relationship between utilities availability and utilities (Uti). 

 
All urbanized patches diffuse resource utilities (potable water, sewer, electricity, etc.) 

and other goods and services available to the community.  Existing urbanized cells dif-
fuse resource attractiveness because they embody access to utility infrastructure; cells 
closer to existing utilities are easier and cheaper to develop (Figure 2-5).  

 

 
Figure 2 - 5.  Diffusion of resource availability information over geographic space.  For any 
developed cell (1) resource availability is pronounced to adjacent cells through the diffu-
sion of information (2).  The information (or attractiveness of developing nearby) is dif-
fused over space (light to dark yellow), because infrastructure available from this cell is 
more costly as distance from the cell is increased. 

 
Roads as the means for transporting large amounts of resources (goods, services and 

information) attract development by diffusing or displaying those resources as well (Fig-
ure 2-6).   
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Figure 2 - 6.  The diffusion of resources from roadways to attract development.  Note the 
increased attractiveness at road intersections. 

 
Cells closest to the road are the most impacted; the attractiveness weakens as distance 

from the road increases (Figure 2-7).  The attraction coefficient is additive, making road-
way intersections highly desirable for development.  

 

 
Figure 2 - 7.  The relationship between road attractiveness and development probability.  As 
the cell distance form the road increases (proximity to road), the roads influence on devel-
opment probability (Rdpr) decreases. 

 
It should be noted that some road systems are unattractive to development.  Interstate 

highways, for example, transport enormous amounts of goods, services, and information, 
but adjacent properties do not have access to them, making adjacent properties neutral in 
terms of road proximity.  This means that cells adjacent to interstate might be unattractive 
to development due to the noise and lighting associated with interstate highways.  It also 
means that areas that have access to off-ramps and the roads proximal to the ramps are 
extremely attractive for development because they become conduits to the transported 
goods and services.  

 



 

 19 

Spontaneous Development Index 
This sector represents the chaotic variables found in any social system model.  It at-

tempts to quantify the random chance of development occurring in any given cell at any 
given time (Figure 2-8).  This randomness can help describe development patterns that 
otherwise may not be economically or socially prudent, yet take place anyway. 

 

 
Figure 2 - 8.  The random chance that any given cell will develop at any given time. 

 
A simple model was constructed in a simple commercial CA modeling language 

(StarLogo) to test ability of the utilities (uti ), neighborhood (ni ) and spontaneous (rci ) 

models to replicate existing ‘cluster’ and ‘leapfrog’ development patterns.  Sub-model 
rules for reach sector were input to a 40 x 40 grid and run.  Output was captured in three 
segments labeled time 1, 2, and 3 (Figure 2-9).  Although not a direct replication, the out-
put patterns reveal a similarity in form to the development patterns noted in Figure 2-3. 

 

 
Figure 2 - 9.  Output patterns from a sample model built in StarLogo to replicate the uti , ni , 
and rci  sub-model structure.  
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DEM Index 
The Digital Elevation Map ( DEMi) sub-model (Figure 2-10) calculates the DEMpr  at 

any time (dt ) based on the geographic features present in the landscape and their affect 

on development patterns.  Inputs include GIS coverages of slope, flood areas, and soils 
types aggregated into one calculation.  Cell slope influence – as cell area slope increases 
developmental probabilities decrease (Figure 2-11) – is based on regionally specific sta-
tistical data.  In some parts of the US slopes attract development (especially when views 
are favorable), in others it repels.  In either case, the DEMpr  declines as it moves toward 

code-restricted or economic viability.  The probability of development occurring in a 
flood zone is dependent on the type of zone (flood frequency) based on Federal Emer-
gency Assistance (FEMA) maps and local jurisdictional information.  Soils types are used 
to determine the structural stability of the soil and its capability to handle building con-
struction requirements. 

 

 
Figure 2 - 10.  DEM index model describing the relationship between slope, flood zones, and 
soil types. 
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Figure 2 - 11.  The DEMpr  as it relates to regionally specific slope factors. 

 
Feedback to the DEMi  index model will be made from overland drainage assessment 

models.  Soil erosion coefficients used to calculate suspended solids in streams will be 
affected by a development that takes place on steep slopes.  Policies aimed at reducing 
suspended solids should include code restrictions on steep slope developments. 

Regional Economic Driver 
The economic model in LEAM (LEAMecon) forecasts changes in output, employ-

ment and income over time based on changes in the market, technology, productivity and 
other exogenous factors. The resulting economic trend is used as an input to a dynamic 
housing market simulation that then feeds into LEAM as residential land-use change. The 
agent-based housing model predicts actual houses built in a given year based on trends in 
the economy and anticipated demand by specific population cohorts. The combined eco-
nomic and housing model serves as a prime driver of land-use change. Through LEAM, 
this work connects knowledge in regional science, housing markets, and spatial land-use 
analysis. 

 
Using LEAM, alternative investment decisions can be modeled as different scenarios 

to see their impact on the regional economy and land-use. Scenarios are also a way to 
model shocks to the system. Shocks include local events such as closing a military base, 
as well as local responses to external policy changes, such as changes in the tax on gaso-
line. Shocks can be induced at a point in time or spread out over a period like investment 
in highway construction over several years.  Consistent demographic and economic fore-
casts under different scenarios enable LEAMecon to model alternative demands on resi-
dential and commercial / industrial growth over time in the region. This strengthens 
LEAM’s capacity to provide answers to a wide range of ‘what-if’ policy questions. 

 
Coupled Input – Output Econometric models provide a wide array of impact analysis 

and forecasting abilities. When a model is run for a period of 30 years, many structural 
changes are expected to occur in the economy including changes in production structure, 
consumption behavior, etc. To capture such dynamics, I-O models are integrated into 
wider dynamic modeling frameworks. In a computable general equilibrium framework, 
the coupled model accounts for equating supply and demand sides of each commodity in 
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the market. This is true for matching labor demand and supply through migration pat-
terns, changes in unemployment levels, labor force participation rate, etc. 

 
The core model consists of nine economic sectors and nine components of final de-

mand. The output from each sector is consumed by other sectors (inter industry flows) 
and by components of final demand (which characterizes value added in the economy). 
The model consists of five modules of equations for each industrial sector and an addi-
tional module for demographics variables. The first module is the input output module 
that captures flow of goods and services inside the region, their destination to final de-
mand and exports outside the region. To overcome the static nature of Input Output 
model, it is coupled with an econometric framework, where output, employment and in-
come corrections due to changes in technology, productivity, etc., are made in three dif-
ferent modules. The fifth module endogenizes the dynamics of final demand and provides 
feedback into the production cycle. The final or sixth module is the demographic model 
that balances labor force demand and supply mechanisms. All the modules are solved si-
multaneously to completely forecast regional economic indicators that are used as input 
to other sub-models in LEAM. 
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Table 2-1: LEAMecon Variables forecasted 

 
Economic Variables Demographic Variables
  Gross Regional Product   Population by age cohorts
  Consumption by households     0-4
  Private Investment     5-14
  Federal government     15-14
     Non defense purchases     15-24
     Defense purchases     25-44
     Investment     45-64
  State and local government     65+ Retired population
      Education   Components of population change
      Non education       Births
      Investment       Deaths
  Personal Income       Net migration
      Residential adjustment of income   Labor Force
      Contribution to social security      Percent of resident workers
      Income from dividends, rent, etc      Percent of non resident workers
      Transfer Payments      Unemployment rate
      Per capita personal income      Average wage and by industry

School age

Active labor force and 
population in driving age

Output, employment and earnings: Total and disaggregated by industry  
 

  Table 2-2: List of LEAMecon Economic Sectors 

 
Economic Sectors

Extractive (agriculture and mining sector)
Construction
Manufacturing
Transportation, Communications and Public Utilities
State and Local Government Enterprise
Retail Trade
Wholesale Trade
Finance, Insurance and Real Estate
Federal Government Enterprise  

 
The model described above provides consistent economic and demographic variables 

for the region (Table 2-1). Various shocks like investments to specific sectors (listed in 
Table 2-2), increase in public spending or consumption from households, etc., can be ap-
plied to the regional economic system.  The employment model shows changes in pro-
ductivity over time to determine regional employment levels.  The percentage of workers 
living outside the region and commuting to work on daily basis is used as a policy vari-
able to model effects of income leakages from the region. The income module models 
regional average wages in response to interaction between labor demand and labor sup-
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ply. The average wages are converted into industry specific wages and total regional in-
come is computed. Personal income is derived from wages and salary income after ac-
counting for other components such as contributions to social security, transfer payments, 
etc.  The income leakage due to daily commuting is modeled in this block. Finally, differ-
ences in labor demand and supply affects net migration. If the employment demand in-
creases relative to labor supply from households, the regional unemployment rate de-
creases until people migrate into the region and equilibrium is reached. These dynamics 
occur with different time lags in different parts of the model. Population change is mod-
eled on births, deaths and net migration. The total population is sub divided into different 
age-cohorts, each of which has a specific role to play in regional land use change, evolu-
tion and impact assessment in the region. 

 
The economic driver model used in LEAM captures causal mechanisms and not just pat-

terns of changes and impacts. The forecasts generated are consistent with local conditions and 
all coefficients are region specific. It also provides an opportunity to model economy related 
shocks to the region and evaluate alternative ‘what-if’ possibilities. In addition to predicting 
consistent interdependent economic and demographic variables, its transparent structure helps 
to trace the propagation of shock through the system and present a clear picture of the regional 
dynamics providing useful information to Land-use Evolution and Impact Assessment Model. 

 
Housing Demand Model 

The economic driver sub-model connects economic trends and population pressures 
into land-use transformation drivers by creating a demand for new housing.  The model is 
based on empirical studies that show a significant correlation between housing transac-
tion volumes and the percentage of deviation from the Gross Area Product (GAP) trend 
(Ortalo-Magne and Rady 1998) (Figure 2-12).  The significant difference between what 
appears to be a simple concept – when the economy is good housing demand is high – is 
how a good economy is determined.  Ortalo-Magne and Rady have determined that a 
perception of positive economic activity, usually in the form of an upturn in the GAP, 
produces and increase in confidence and a subsequent increase in housing demand (after 
the usual financial and institutional lags). 
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Figure 2 - 12.  The connection between economic output and development probabili-
ties Ecpr . 

 
Although economic trends determine a favorable economic outlook, transformation 

will not take place with housing demand.  Housing demand in the Eci  sub-model is de-

veloped through population pressure, household income, size and average housing prices 
(Figure 2-13).   New housing demand is modeled as a ‘push’ of first time buyer rather 
than a pull from move-up owners.  The push is determined by the relative income of first-
time homebuyers (typically in the 23 – 30 year old population cohort), and their ability to 
afford the starter homes in the region.   

 

 
Figure 2 - 13.  Population and housing demand model sector. 

 
The population and housing demand sector provides the pressure to build new hous-

ing in order to satisfy demand.  However, it is not required that all the annual demand be 
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met in one year.  Typically boom and bust cycles cause cyclical waves in construction 
starts causing homebuilders over-build or under-build market areas.  Demand also can 
become pent up during low economic periods (a negative GAP trend), spiking in times 
when the GAP moves to a positive positions.  It was found that the most significant corre-
lations between GAP and housing starts occur when the trend in the GAP rises.  Even a 
low GAP output position that begins to upturn has a positive impact on housing starts.  
An increased demand also influences housing prices, rising over time in response to the 
demand. 

 

 
Figure 2 - 14.  Stella output of the Economic Index showing the relationship between Housing De-
mand (blue), GAP trends (green), and housing starts (red). 

 
This index also determines how many housing units will be required for any given 

year to satisfy final demand.  The spatial allocation of these units is determined through 
the development probability calculations.  The current LEAM environment does not at-
tempt to allocate specific numbers of housing units, but it does use feedback control 
strategies that speed up or slow down the actual number of new units constructed depend-
ing upon how well the model conforms to households projected (Figure 2-15).  
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Figure 2 - 15.  The adjustment of demand (projected) vs. simulated output of households. 

 
Annual projected household demand (hhproj ) is compared with simulated output totals 

(hhsim ) to determine the rate of growth (kt) for the following year.   

kt = hhproj hhsim  
If there is a surplus of households in the simulated results (kt < 1), demand for the fol-

lowing year is reduced (by multiplying by kt) and actual growth will slow, reducing the 
construction of new units.  If the there is a shortfall of units (kt > 1), the growth function 

increases demand for the following year to correct the shortfall.  This self-modification 
function keeps the simulated households in line with projections.   

The economic index is a regionally scaled model that works across the study area in 
annual time steps.  This model is indicative of the need for a hierarchical approach.  Eco-
nomic forecasts occur over large geographic areas and do not impact near-term develop-
ment or growth related decisions, although they do have a large influence over annualized 
processes.  In the LEAM framework the economic index is an important factor that “de-
cides” if the existing demand can be realized or if the economic constraints are too limit-
ing.  

 
Transportation Index 

The transportation sector uses simulation and dynamic modeling techniques to ad-
vance an understanding of the connection between transportation systems and the devel-
opment process.  The sub-model generates a transportation based development probabil-
ity for each cell, at each time step (tj), based on three major components: road access 
(uti ), road carrying capacity (cai ), and road congestion (cci). 

Road access considers the probability for developmental transformation based on cell 
proximity to roadway networks (see uti  section 0).   
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Road Capacity and Congestion 

Impediments or attractors of land-use transformation can at times relate solely to 
transportation networks.  Population and employment growth increase vehicle numbers; 
low-density land-use patterns increase vehicle miles driven, and commute times are af-
fected by employers that increasingly move toward the fringe.  These factors (among oth-
ers) are causing an unprecedented increase in local peak-hour congestion that is fast be-
coming the central issue facing local government agencies (Langdon 1994).  Connecting 
congestion to land-use transformation is difficult, although recent studies (Thorsnes 
1994), suggest that in some instances (other variables equalized), development will fol-
low paths of low commute times.  This sub-model promotes one strategy to determine 
probable areas of congestion and their impacts on developmental probabilities. 

trt = cat cct  

 
The congestion sector (Figure 2-16) is based on road capacity and intensity of use at 

peak hour times to determine a localized congestion coefficient; as congestion increases 
development probabilities in that local area decrease.  Capacity is influenced by type, 
width, and speed limits.  Wider roads, an increase in lanes, and faster speeds can sustain 
higher peak loadings than their narrower slower counterparts.  Based on Department of  
Transportation classification standards, regional road networks are classified by type 
(federal, state, county) and grouped by capacity (low, medium, high).  In LEAM these 
variables are defined and aggregated into a GIS layer for model input. 
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Figure 2 - 16.  Congestion sector cell model determining vehicle trips generated by land-use 
transformation and its impact on road congestion. 

 
The determination of congestion requires an estimate of peak load conditions to com-

pare with road capacity.  Once capacity is reached, the road can be classified as con-
gested.   Peak loads are simulated by creating vehicle ‘drainage’ areas so that cars can be 
drained toward the areas of greatest gravitational pull (typical regional commute direc-
tions).  Like watersheds, vehicle-sheds are hierarchical in nature; gravitational pull is 
provided by larger roadways networks (arterials, highways, interstates) that are organized 
around a more central pull (e.g., a regional metropolis or metro center connectors).  Vehi-
cle ‘topography’ is developed by the creation of a 'cost surface’ map.   

A cost surface is the determination of the relative ease of passage over particular land 
uses from the perspective of a particular cell ‘origin’.  The cost surface shows the relative 
time costs of going from the origin cell to any other destination cell within the study area.  
Relative distances and landscape surface features influence the cost (in time) of moving 
from the original cell to the destination cell (any other cell in the study area).  Longer dis-
tances are more time consuming as are more difficult surfaces (e.g., woodlands, water, 
etc.).  Close distances and easy migration surfaces (e.g., roads. flat agricultural surfaces, 
etc.) require less time to traverse.  Relative surface land-use travel times (based on the 
NLCD land-use map) are indexed and expressed in the relative amount of difficulty in 
crossing a cell of a particular land-use type (Table 2-3).   

 
 
 

Table 2 - 3.  The Relative Time Index Values for a Given Land-use Type. 
No. NLCD Land-use Type Time Index  
1 21 Low Intensity Residential 10 
2 22 High Intensity Residential 10 
3 23 Commer-

cial/Industrial/Transportation 
10 

4 31 Bare Rock/Sand/Clay .05 
5 32 Quarries/Strip Mines/Gravel Pits .05 
6 33 Transitional ,05 
7 41 Deciduous Forest 2 
8 42 Evergreen Forest 2 
9 43 Mixed Forest 2 
10 51 Shrubland 5 
11 61 Orchards/Vineyards/Other 5 
12 71 Grasslands/Herbaceous 5 
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13 81 Pasture/Hay 5 
14 82 Row Crops 5 
15 83 Small Grains 5 
16 84 Fallow 5 
17 85 Urban/Recreational Grasses 5 
18 91 Woody Wetlands .05 
19 92 Emergent Herbaceous Wetlands .05 
20 Water .001 

 
Digital elevation also plays a role in the determination of a cost surface map (Figure 

2-17).  Steeper slopes or ravines are more difficult while flatter slopes are easier to trav-
erse.  Much like a topographical map, the cost surface map can be used to divide the re-
gion into hierarchical vehicle sheds based on road networks (instead of waterways), that 
drain cars (instead of water) to a gravitational roadway system of the next higher order.  
Vehicle sheds (Figure 2-18) help to interpret the likely movement of vehicle direction at 
peak times so that an aggregation of loads can be summarized (at determined outfall ar-
eas) and compared to capacity. 
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Figure 2 - 17.  A portion of the cost surface map for Kane County Illinois.  White is water (no 
passage), green is easily traversed, brown is more difficult. 

 

 
Figure 2 - 18.  Vehicle shed delineation of Kane County Illinois.  Blue, orange, green and yel-
low, designate federal systems, shades of color within those ranges delineate state high-
way systems. 

 
The aggregation of vehicle trips within a particular vehicle shed reveals only one part 

of the total vehicle number equation.  Vehicles that are expected to come from outside the 
shed area must also be considered when aggregating the total expected.  This is accom-
plished using historic traffic counts.  Historic counts (Figure 2-19) are taken from 1960-
1990 DOT paper maps and annual average 24-hour traffic volumes determined by the US 
DOT.  A regression analysis is used to develop algorithms for probable ‘outside’ influ-
ences on aggregate traffic counts.  
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Figure 2 - 19.  Historic traffic count maps used to determine ‘outside’ influences on total ve-
hicle shed calculations. 

 
Assumptions made within the congestion sector include: (1) the fact that morning 

traffic will generally flow toward the nearest metro center while evening traffic will re-
verse flow and (2) commuters will generally choose routes based on ‘least’ time averages 
(although this model excludes stop lights and other considerations). 

Cells within each vehicle shed are assigned cct  for time (t), influencing the pt  for that 

area; as congestion increases, development probabilities in that area decrease (Figure 2-
20). 

 

 
Figure 2 - 20.  The relationship between road congestion (Ccpr) and development. probabil-
ity. 

 



 

 33 

  

Example: Transportation as a Driver of Land Use Change in the St. Louis Region 

Traffic-flows close to the design-capacity for a road cause the travel-speed on such a road to 
drop below the design-speed or the free-flow speed, thus, increasing the travel-time over such a 
road. An increase in travel-time over a road makes it less attractive for people traveling on them. 
People tend to choose alternative routes, which might not be the shortest path for reaching their 
destination. To enable perception of this change in behavior, the employment attractors for the 
region are changed based on the improved travel-times over the roads. These employment attrac-
tor maps are then made available for the rest of the LEAM model to generate updated land-use 
for the region. Thus, the impact on transportation is translated into a driver for land-use change 
through this mechanism.  This approach enables LEAMtrans to run parallel with the LEAM 
model. 

Congestion Calculation Results 

LEAMtrans was developed and applied to the St. Louis Metro region.  The road network in 
the analysis was limited to US highways and Interstates in the region. The analysis produced peak 
hour (evening) traffic on this road network.  

Preliminary results from one scenario indicate, as might be expected, that the bridges will be-
come heavily congested over the years. Congestion is also likely on I-270, I-70 between I-270 
and the bridge, I-64, I-44 & I-55 between I-270 and the bridge. US-40 connecting I-70 and I-64 is 
also likely to get congested. Almost all of the roads outside of the St Louis city and on the Illinois 
side seem to have an un-congested flow in the year 2025. 

The congestion is reflected in the reduced travel-speeds and thus reduced travel-times on 
these roads. This reduction in travel-times causes a significant variation in the employment attrac-
tor in the region. The attractiveness of inner city areas declines while that of the outlying areas  
increases, thereby increasing sprawl (Figure 2-21). 
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Growth Trends 
The growth trends function (gti ) is an enumeration of the regional growth aggres-

siveness (positive or negative) of local municipalities.  Historic municipal growth trends 
are analyzed using statistical regression models.  Regional scores are then normalized 
(from 0-1) from least aggressive to most aggressive.  Cells with equalized ( Pt ) scores are 
attracted to more aggressive (higher gti ) communities (Figure 2-22).  Community influ-
ence buffer areas (Figure 2-23) are calculated using a gravity model to simulate the 
sphere of influence according the size of the municipal land area.  Some states, including 
Illinois, require a metropolitan planning area that includes a 1.5-mile perimeter buffer.  
This variable captures regional differences in growth policies (cells within the influence 
of more aggressive communities are easier and cheaper to develop) and can be modified 
during the course of a model run to simulate policy shifts. 

 

 
Figure 2-21. The changing attractiveness of outlying areas due to traffic congestion in 2000 

(left) and 2025 (right).  Red areas represent areas of increased congestion and re-
duced attractiveness. The congestion is reflected in the reduced travel-speeds and 
thus reduced travel-times on these roads.  This reduction in travel-times, cause a 
significant variation in the employment attractor in the region.  The attractiveness of 
inner city areas declines while that of the outlying areas increases, thereby increas-
ing the possibility of sprawl. 
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Figure 2-22.  Historic growth patterns and the establishment of regional growth aggressive-
ness rates (gti ). 

 

 
Figure 2-23.  Growth area buffers in Kane County, Ill. (differences in buffer values by color). 

 

Social Driver 
The Land-use Evolution and impact Assessment Model (LEAM) simulates land-use change 

generated from new development based on projected population growth and proximity to attrac-
tors such as roads and city centers.  The weighting of attractors is such that if a vacant cell exists 
close to city centers in the form of developable land, it has a high probability of development.  
However, high vacancy may signify areas that are unattractive for development due to demo-
graphic or housing conditions.  The LEAM Social Model was developed to address this gap – to 
capture the social or demographic factors affecting patterns of migration and new development in 
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a region.  Particular emphasis has been placed on areas of exodus or abandonment, to better un-
derstand the dynamics of depopulation that occur in parts of the region. 
 

In addition to their importance to the region, social factors related to metropolitan develop-
ment have been investigated by a number of scholars.  Temkin and Rohe (1998) examine factors 
influencing the strength of social capital in neighborhoods and thereby their resilience to urban 
ecological change.  Downs (2000) investigates the relations between sprawl and decline across 
American cities, postulating conditions associated with poverty that may cause migration to the 
suburbs. Further examination is warranted within metropolitan areas, as described for the case of 
St. Louis below. 
 

Although development of social theory would be helpful for addressing the social dynamics 
at play in metropolitan areas, a data-based approach was deemed most immediately useful to in-
form LEAM.  Three empirical analyses were employed at with tract-level census data to examine 
the social factors embedded in the dynamics of land-use change in the St. Louis region:  a spatial 
analysis of poverty rates in 1990 and 2000; a historical analysis of housing change from 1970 to 
2000; and identification of development indicators to inform land-use change.  
 

The analysis began with poverty rate to capture elements of social distress.  As used here, 
poverty rate is the fraction of individuals with incomes below a specified threshold, based on the 
cost of living to meet the most basic needs. An exploratory analysis revealed the presence of pov-
erty in high concentrations in the center city and East St. Louis areas.  Analysis of spatial cluster-
ing (autocorrelation) of poverty using a variety of measures for tract neighborhood revealed sub-
stantial isolation of poverty, and an increase in this isolation from 1990 to 2000.  
 

With the acquisition of a dataset that extended back to 1970, and using 2000 tract boundaries 
(as such boundaries change frequently), a thorough historical analysis examined correlates of 
housing and population change.  Housing change (percent change during a decade relative to the 
base year at the start of the decade) was used as the critical dependent variable, as it ties most di-
rectly to land-use change.  A variety of regression techniques were used to assess the approximate 
level of significance of demographic attributes in a base year on housing change in the subse-
quent decade.  Although significance levels varied with decade and with method, certain factors 
surfaced as significant across the analyses. 
 

Based on the results of the historical analysis, indicator maps were prepared for each of four 
factors: vacancy rate, average household income, rental rate, and proportion of residents without 
vehicles.  To inform the land-use change drivers of LEAM, a development likelihood function 
was created based on the frequency of housing unit increases as they correspond with variable 
levels at the start of the most recent decade (1990-2000). 
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The spatial and temporal analysis of census data highlights first that poverty is clustered in 
and around the central city, while affluence is clustered around the fringes; spatial disparity be-
tween rich and poor is increasing.  Figure 2-24 shows how clusters of poverty (red) become in-
creasingly isolated from clusters of affluence (blue) from 1990 to 2000, indicating growing eco-
nomic disparity in the region.   

 
Figure 2-24. The spatial auto-correlation of poverty 

 
Historical analysis of housing change reveals that significant social drivers of land-use 

change in the region are vacancy rate, income, rental rate, and proportion of residents without 
vehicles.  These demographic factors will be combined with the other drivers of land-use change 
in LEAM. These factors will be used to assign scores to cells in particular Census tracts, which in 
turned altered the likelihood of development in those cells. As an example, Figure 2 indicates va-
cancy rate in the year 2000; dark shades indicate greater likelihood of residential vacancies and a 
lower likelihood of new residential development. 
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Figure 2-25. Example  Vacancy Indicator Map for 2000, St. Louis Region. 

 

Proximity Drivers 
 
The generic LEAM simulations used proximity to city centers as a driver of land-use change. 

Public review of these simulations suggested that land-use change in this region is likely to be 
driven by proximity to other centers such as employment, shopping, health, and cultural ameni-
ties. Data for these centers have been acquired, processed, and the effects of these drivers are be-
ing investigated through LEAM simulations.   Proximity maps are developed using local data sets 
that identify important local features.  A gravity model is then applied to the features map to cre-
ate a map of approximate travel times to the feature.  The map produced gives each a cell a value 
based on its ‘proximity’ to the feature.  A few examples of developed proximity measures are 
given below. 
 

Employment Centers 

Because cities encompass a variety of activities that are not necessarily sympathetic uses, it 
was determined that employment activity and there spatial location will be an important compo-
nent in determining model outcomes. For example, to develop a proximity map for employment 
in the St. Louis metropolitan region, the top 114 employment centers (based on total employment) 
in the St. Louis region were identified and mapped.  The centers were divided into three distinct 
categories: large employers, medium, and small employers.  Travel times to the nearest employ-
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ment centers were calculated for each cell.  Each group was calculated independently and the data 
combined for 1 employment center proximity map (Figure 2-26). 

 

 
Figure 2-26.  An employment proximity map for the St Louis metro area representing 

the top 114 employers in the region and a cell-by-cell proximity calculation to 
each. 

 

Healthcare Centers 

Although access to jobs is important cities also provide numerous other features that may in-
fluence land use change.  Access to healthcare may be one.  To develop a proximity map for 
Healthcare, hospitals in a region must be identified and mapped.  Travel times to the nearest 
healthcare centers are calculated for each cell to produce a healthcare center proximity map such 
as the one developed for the St. Louis region in Figure 2-27. 
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Figure 2-27.  Healthcare centers proximity map for the St Louis metro area represent-

ing the major healthcare facilities in the region and a cell-by-cell proximity calcu-
lation to each.  Red areas have easier access to healthcare in the region. 

 

Surface Water Resources 

Access and proximity to surface water resources can be an important component for certain 
types of development. Recreational type developments and open space gravitate toward major 
water features in the landscape.  To develop a proximity map for water resources, major bodies of 
water in a region are identified and mapped.  Travel times to the nearest water feature were then 
calculated for each cell to produce a water resources proximity map, such as the one developed 
for the St. Louis region in Figure 2-28. 
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Figure 2-28.  Surface water resources proximity map for the St Louis metro area repre-

senting the major water features in the region and a cell-by-cell proximity calcula-
tion to each.  Darker areas have easier access to surface water resources. 

 
Besides the drivers described above, there are several other proximity drivers, which 

might be used in LEAM, including forest proximity, transportation proximity (accessibility of 
ramps, major highways, major road intersections), mass transit stations proximity, cultural 
center proximity, etc. All these drivers are quite similar in terms of how they are created and 
used.    

 

Spatial Frequency Analysis (SFA)  
 

All LEAM drivers or sub-models eventually will be combined to estimate the land-use trans-
formation probability as described earlier.  It also means all the driver (proximity) maps have to 
be transformed into index probabilities (also called scores). The spatial frequency analysis ap-
proach is adapted in LEAM to project a value (travel minutes, slope degree etc.) on a driver map 
to a score. It has been a critical link in the LEAM model framework.  
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This analysis is to extract a profile (we also call this profile "graph") of land use distribution 
on a feature map. Here the feature map means LEAM driver map, like slope map, travel time map 
to ramps etc. It answers questions like: how many residential cells on land use map are within 5 
minutes to interstate highway ramps, and how many are within 10, 20...minutes? Based on this 
profile information, we can reasonably estimate how likely a certain land use type will happen at 
certain feature value. In the above example, it tells us what is the residential development possi-
bility (or, more precisely, score) of a cell within certain minutes to highway ramps in the perspec-
tive of highway accessibility.  
 

 
                             FIGURE 2-29 Spatial Frequency Analysis 
 
Analysis is conducted on the following drivers in generic LEAM:  

Driver Name  Description  Units  Comment  
Slope  average slope of a cell  degree  data range: 0-90  

County Road 
Proximity  

travel time to a nearest 
county road  

15-second  
The unit is used to be min-
utes; 2 hours is the cut-off 
point  
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State highway 
Proximity  

travel time to a nearest 
state highway  

15-second  same as above  

Ramp Prox-
imity  

travel time to a nearest 
ramp  

15-second  same as above  

Road Intersec-
tion Proximity  

travel time to a nearest 
major intersection  

15-second  
same as above; we just con-
sider major road intersec-
tions  

Forest Prox-
imity  

distance to a nearest for-
est patch  

meters  
small forest patches are re-
moved  

Water Prox-
imity  

distance to a nearest wa-
ter  

meters  
small water patches are not 
considered; census water 
data is adapted  

City Attractor  
it is gravity model to 
measure a cell's prox-
imity to cities  

population/(TravelTime^2) 
it is not a simple distance or 
travel time  
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FIGURE 2-30  Frequency Analysis Example 
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3     WEIGHTING, CALIBRATION, AND VALIDATION ISSUES 
How well do LEAM simulations project meaningful information?  One way to assess 

the validity of modeled land-use transformation is to reconstruct historic conditions and 
then project the resulting model ‘forward’ to the present.  This approach to validation util-
izes our inherent knowledge of current conditions as the basis for revealing similarities 
between the model and actual measured transformation.  The approach is limited, how-
ever, by the availability of applicable historic data as well as the chaotic nature of eco-
nomic and social systems.  For this reason, models are not capable of predicting the fu-
ture.  However, by using carefully selected proxies and assumptions, they may be capable 
of projecting the outcome of a given scenario, and these projections can help to explain 
discrete pieces of larger realities that we observe.  

This distinction between prediction and projection is important: 

The purpose of a spatial transformation model is not to ‘predict the future’, but to 
develop credible, defensible projections of the likely consequences arising from a 

stated set of assumptions, rules, and constraints as applied to a specified set of re-

sources and reported in relation to indicators accepted as valid by the profes-

sional planners in that region (Malczewski 1999). 

Projections are not predictions, but they can be invaluable for planning when based 
on solid expertise and data sets.  A region’s thought leaders and prominent decision mak-
ers are more capable of producing land-use ‘predictions’ than a computer model.  Com-
prehensive 10- and 20-year regional plans reveal communal land-use aspirations that can 
be seen as predictors of the communal vision.  But these plans about land-use transforma-
tion contribute nothing to sustainability unless they are the end result of analyses that ad-
dress issues such as: 

• the economic, social, and environmental consequences of the transformation plan 
• whether the consequences provide long-term benefits to the overall community 
• competing alternatives that may promote more sustainable development. 
 
Even if realistically achievable predictions about future land-use change were feasible 

in a technical sense, they could be considered valid only if the community involved de-
cided not to periodically reevaluate its direction or consider other directions as new pos-
sibilities emerged (unlikely given our political and economic structure).  On the other 
hand, the science and art of projecting land-use change and its impacts is premised on 
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idea that human settlements are diverse and subject to chaotic change and that these 
things should be considered fully and tested periodically. 

 
3.1     Weighting 
The ability to weight sub-model drivers in order to reflect (in a reasonably accurate 

manner) regionally specific land-use change phenomena is an important step toward real-
izing external validation and transportability goals.  The processes of weighting and 
model calibration are not mutually exclusive – factor weightings can have a large impact 
on modeled outcomes.  Analyzing modeled outcomes can help in determining variable 
weights.  Factor weightings can also affect the reliability and validity of the model, two 
important components for undertaking a calibration effort.  Similar approaches to deter-
mine weighting coefficients and the calibration of the modeled output can be affective.   

The expressed weightings of model variables can be approached in two ways.  The 
first might be described as a self-weighting process in which model variables are articu-
lated from within the user interface so that affected model output would reflect user-
induced preferences.  This process removes objectivity from the modeled output and 
could make it difficult to assess the variability within same regional models runs (if run 
with different weighting criteria).  These negatives, however, may be offset by the attrac-
tiveness of user control and self-ascribed reliability.  Users who are required to interact 
and become involved in the modeling process are more likely to believe the outcomes 
presented. 

A second approach is the development of regionally specific variable weightings that 
are expressed within the model structure and constant for each user in that region.  It is 
important that the model development process include an initialization of the model for a 
particular region, so that relevant policies and scenarios are pointed at regionally signifi-
cant factors, drivers, and impacts.  This more objective approach requires valid and avail-
able historic data sets, but such data sets are difficult to produce.  The process analyzes 
modeled output against the historic data to determine the model(s) explanatory power.   

 

3.2     The GLUC model and Weights 
The LEAM Generic Land Use Change (GLUC) model attempts to allocate new resi-

dential, commercial, and urban open space land uses.  The quantity of new cells is con-
trolled by an external model therefore the GLUC model is only concerned with the spatial 
location of the land use change.  
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The GLUC model generates a probability map for each new land use classification 
based on land use change drivers.  The GLUC model currently has 12 drivers but local-
ized versions of the model may have many more.  The probability calculation requires a 
weight be assigned to each driver based on a driver’s importance in the land use change 
process.  Initially these weights were estimated using feedback provided by professional 
planners.  Because of the subjective nature of this process and difficulty in optimizing 
100 or more weights a more robust calibration process was required. 

 
One of the key advantages of the GLUC model is the use of small (30x30 meters) 

cells that have a single land use classification instead of mixed use classifications.  This 
advantage of using fine resolution cells is the ability to aggregate results in arbitrary 
shaped regions such as such as political boundaries, census blocks, transportation analy-
sis zones, watersheds, or school districts without requiring the complex processes of as-
signing fractions of mixed-use areas to other boundaries. 

3.3     Calibration Requirements 
The GLUC model calibration had several requirements. 

1) the weights should be continuous variables (floating-point values) 
2) the weights should be allowed to vary over independent ranges 
3) the calibration process should be able to simultaneously deal with a large     

number of weight 
An evaluation of the model run times showed that a simple Monte Carlo approach to 

calibration would require excessive amounts of computing time even with the availability 
of a national supercomputing center.  After initial attempts using a spatial statistics ap-
proach, a genetic algorithm approach was selected. 

 
3.4     Genetic Algorithm Approach 

Genetic algorithms (GA) have been successfully used to find approximate solutions 
to difficult-to-solve problems through application of the principles of evolutionary biol-
ogy to computer science. Genetic algorithms use biologically-derived techniques such as 
inheritance, mutation, natural selection, and recombination (or crossover).  

Genetic algorithms are typically implemented as a computer simulation in which a 
population of abstract representations (called chromosomes) of candidate solutions 
(called individuals) to an optimization problem evolves toward better solutions.  The evo-
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lution starts from a population of completely random individuals and happens in genera-
tions. In each generation, multiple individuals are stochastically selected from the current 
population, modified (crossover and mutation) to form a new population, which becomes 
current in the next iteration of the algorithm. 

In the case of the GLUC model, the driver weights would be the chromosomes and a 
specific set of weights would represent an individual.  Individuals would be selected for 
propagation of their chromosomes based on their fitness.  The fitness would be the ability 
of the model to accurately simulate the land use change for a region for a known histori-
cal period (typical historic comparison is based on 1993 and 2000 land cover data). 

The GA approach begins by creating a population of the individuals each with unique 
trial weights.  Initially the weights are chosen at random based on allowed variance for 
each weight. For each individual, a model is run and a fitness score calculated.  To 
develop new trial weights, an evolutionary strategy involving selection, crossover, and 
mutation is used. 

During selection two individuals are chosen from the population.   The selection 
process is based on probability; individuals that are evaluated with higher fitness score 
will most likely be selected for crossover. Those with low fitness values probably will 
not. The key point is that this phase has an element of randomness just like the survival of 
organisms in nature.  

The probability for selection is based on the individual’s fitness value relative to the 
rest of the population. Selection begins by determining an individual’s relative fitness by 
dividing its fitness value by the sum of all fitness values. Then a random number 
generator is used to select individuals for the crossover phase. The odds of an individual 
being chosen during each roll of the random number generator are equal to the 
individual's relative fitness. The number of individuals selected is equal to population 
size, therefore, keeping the size constant for every generation. Some individuals will be 
selected more than once in which case multiple copies of the individual will be in the set 
used by the crossover operation.  

3.4.1    Crossover 
Crossover is the process of combining the genes (weights) of one individual with 

those of another to create offspring that inherit traits of both parents. The crossover rate is 
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the odds of an individual being selected for the crossover operation. The individuals that 
are not selected will not have their genes changed before proceeding to the mutation 
phase. Those that are chosen will be paired with a mate which is another individual that 
was also selected for crossover. From each pair, two offspring will be created that will 
replace their parents. To determine which genes are inherited from the father and which 
genes will come from the mother, a random number between one and the total number of 
genes minus one will be created. For the first offspring, the genes numbered between one 
and the random number will be inherited from the father. The genes numbered between 
the random number plus one and the maximum number of genes will come from the 
mother. The genes for the second offspring will be inherited just like those of the first off-
spring except that the genes that came from the father in the first offspring will come 
from the mother and those inherited from the mother will come from the father.  

3.4.2     Mutation 
Just as in nature, some individuals will have random mutations occur in their genes. 

The mutation rate specifies the odds that a given gene will be mutated. If a gene is se-
lected for mutation then its value will be changed.  In our approach the mutation uses the 
same variance as used when choosing initial weights for the population. 

One again a fitness score is produced for every individual within the population.  The 
iteration continues until the minimum fitness function (sum of the error squared) fails to 
change by 0.01%. 

3.4.3    Fitness Function 
Generating a fitness function represented a unique challenge for the GLUC model.  

Ideally the model would start from an initial condition and be configured to progress to 
another known state.  The fitness function would return a value based on deviation of the 
model results from the observed ending state.   

 
In the case of the GLUC model, final land use data would be compared to an ob-

served land use.  Unfortunately, collection of consistent historical maps has proven to be 
a challenge.  The USGS has provided a nation-wide data set of land cover / land use data 
classified from satellite images collected between 1989 and 1992.  The original intent 
was to provide a similar collection of data sets for 2000.  These new data sets would pro-
vide an ideal starting and ending states for the model but it seems less likely these 2000 
data sets will be available. 
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An additional complication is caused because a cell-by-cell comparison between the 
modeled land use data and the observed land use data would flag errors when correspond-
ing cells do not match.  In the cases of two neighboring cells, if one cells transitions in 
the observed data but not in the modeled results and the other cell behave just the oppo-
site manner then cell-by-cell comparison would show both cells being in error.  From a 
practical stand point, spatial placement within two or three cells is accuracy is most likely 
acceptable.  The ideal fitness function would contain a “fuzzy match” mechanism that 
over came the cell-by-cell comparison. 

 
To overcome these problems the GLUC model has been calibrated by starting with 

the USGS land use data (circa 1992) and modeling through the year 2000.  The resulting 
model data is aggregated on census block boundaries and results compared to population 
changes in census blocks from 1990 to 2000.  The sum of the error squared for all census 
blocks is computing and becomes the fitness score for the model run. 

 
The aggregation step provides a “fuzzy match” requirement by allowing any cell de-

velopment within the census block to correspond to population change in the census 
block.  While some concern exists about comparing the model land use change data to 
census population data, location of the housing and hence population is one of the pri-
mary uses the GLUC model.  Therefore calibration based on this feature seems appropri-
ate. 

 

3.4.4     Infrastructure 
To manage the large number of runs required by the GA approach, a client/server sys-

tem was developed.  A master server manages the population of individuals, handles se-
lection, crossover, and mutation.  Based on new individuals within the population, the 
server generates a configuration file for the model containing the necessary weights. 

 
The model was modified to download configuration files using the standard HTTP 

protocol.  Following the model run the fitness score is calculated and the fitness score is 
returned to the server again using the HTTP protocol. 

 
The advantage of this distributed approach is that given access to the large computing 

facilities, hundreds of models can be run in parallel.  This allows convergence to the 
global minimum in a much smaller amount of time. 
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4 LEAM Land Use Change Results  
Once the data has been collected, a base map has been created (landcover map of region be-

ing modeled for base year), drivers have been developed, and the model has been calibrated, a 

model run can be conducted.  Upon completion of the run, landcover maps are generated for each 

year of the run (runs typically are typically 30 to 50 years).  From these results other maps are 
created that summarize the results of a LEAM run, comparison maps are created that compares 

the results of two different scenarios, movies are created that show how land use change occurs 

over time, and databases are created that indicate what land use change is projected to occur for 

each year of a run.     
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 
Figure 4-1:  2030 Land cover map of the Peoria, Illinois Tri-County Region based on LEAM 
“business as usual” scenario run 

 

Figure 4-1 is an example of the output maps that result from a scenario run.  This map is the 
land cover map of 2030, the last year of the model run.  A land cover map is produced for each 

year of the model run period (typically 2000-2030 or 2050), allowing land use change analysis, 
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and corresponding impact analysis to be conducted for any particular year of the run. 
 

 
Figure 4-2: Summary Map of Simulation of Land Use Change for the Peoria, Illinois Tri-
County Region.  Purple cells indicate where new development is projected to occur in the re-
gion. 

 

Typically, the results of the 30-50 year run are evaluated with a summary map (Figure 4-2, 

Peoria region and 4-3, St. Louis region) that indicates where new development is projected to oc-
cur in a region during this time period.  Summary maps can also be developed that zoom in on a 

particular part of a region, such as in Figure 4-4, to assist in local planning efforts.  Results are 

also summarized in spreadsheets and graphs that indicate where growth occurred overtime in the 

region (Figure 4-5) and what land uses declined as urbanization increased (Table 4-1).  Figure 4-5 
for example, shows that some counties will have significant increases in development over the 

next few years, but growth will slowly decline over time, and other counties will see more devel-

opment occur 20 to 30 years from now.  Table 1 indicates that forest and agricultural land will 

decline significantly as a result of urbanization.  These results give local stakeholders a perspec-
tive on what the model projects the future will hold for a region in terms of where it will occur 

and how it will impact other land uses. 
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Figure 4-3:  Summary Map of “business as usual” Scenario for the St. Louis Region.  Red 
cells represent new commercial development, yellow cells represent new residential devel-
opment and dark gray cells are existing developing. 

 

 
Figure 4-4: Summary Map of New Development for a small area within the St. Louis Region 
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Figure 4-5:  Projected New Development in Various St. Louis Region Counties. 

 

 

 

Landcover Classification 

1993 

Landcover 

2025 

High Growth 

2025 

Average Growth 

2025 

Low Growth 

Residential 183,408 226,230 218,187 213,641 

Commercial/Industrial 232,747 241,615 239,717 238,901 

Agriculture 1,677,371 1,644,462 1,650,485 1,653,606 

Urban Open Space 164,252 181,133 181,539 181,750 

Forest 963,332 930,195 933,314 935,110 

Grasslands 37,969 36,684 36,828 36,905 

Others 142,001 140,262 140,513 140,669 

Table 4-1: Summary of Landcover Change Results from Business as Usual Scenario for the 

St. Louis Region 

 
 

Comparing Scenarios 

One of the key benefits of LEAM is the ability to conduct scenarios and compare the out-

comes.  This allows one to see how a specific public policy or public investment will impact de-
velopment patterns of a region and the potential impacts of these different patterns.  For example, 
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Figure 4-6 compares a “Business as Usual” scenario with a scenario that assumes implementation 
of the region’s transportation plan.  Consequently, this allows policy-makers to see the affect new 

road projects could have on how the region grows.  In this particular case, the map indicates that 

the addition of these new roads, in particular a new bridge crossing the Mississippi River, will 

shift more growth to the Illinois counties (Monroe, St. Clair, and Madison) and to the outskirts of 
Jefferson Franklin, and St. Charles Counties.  The question then is how this change in land use 

patterns will impact road congestion, economic growth, fiscal needs, and watersheds differently 

than the business as usual scenario. 

 
Figure 4-7 is another example of comparing two scenarios.  This map of McHenry County, Il-

linois reveals development patterns differences caused by the addition of a new interchange at the 

interstate in the southwestern corner of the county.  

 
 

 
Figure 4-6:  Comparison Map for St. Louis Region - Comparing “business as usual” (BUA) sce-
nario with “Implementing Long Range Transportation Plan” scenario.  Blue cells represent 
growth that occurs under both scenarios, pink cells represents growth that only occurs in the 
“Transportation Plan” scenario, and green represents growth that only occurs in BUA scenario. 
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Figure 4-7:  Comparison Map for McHenry County, Illinois - Comparing a “business as usual” 
scenario with a “New Ramp at I-90 and US 23” scenario.  The blue cells represent growth that 
only occurs in BUA scenario and the red cells represent where new growth only occurs in the 
“New Ramp” scenario.   This map shows that growth shifts towards the southwestern corner of 
the county (the new ramp would be just south of the red cells in the county just south of 
McHenry). 

 
 

Spatialization of Data 

Intriguing analysis can also be done by examining the scenario results under various spatial 

extents.  This “spatialization” of the land use change results can provide insights on several direct 
impacts of urban growth; types of impacts that can be estimated include change in impervious 

surface by watershed, demographics by transportation analysis zone, infrastructure needs such as 

water and sanitary facilities, and school facilities. 

 
Watershed 

 
As urbanization occurs in a watershed, impervious surface areas increases, leading to in-

creased runoff volume and discharge rates that cause physical changes to streams and rivers.  
Even at relatively low levels of watershed imperviousness water quality can be impacted.  As the 
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imperviousness increases from 10% to 25% stream quality decreases – increased storm flows and 
higher pollution levels lead to physical change to the streams and reduce biodiversity.  At above 
25% watershed imperviousness stream quality is severely degraded - making restoration very ex-
pensive, if it can be done at all.  In a project for the Peoria region, a spatial analysis was con-
ducted to project how much future development (and impervious surface) in the watersheds of the 
Peoria region will increase under various scenarios.  Results in Table 4-2 indicated that over the 
next thirty years impervious surface will pass 20% for two watersheds and pass 30% for another 
watershed, suggesting that this watershed is becoming severely degraded. 
 

 

 
Figure 4-8: Development by Watershed in Peoria, Illinois Region. 
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Sub-Watersheds Where Imperviousness May Impact Biodiversity 
(% of Sub-watershed impervious) 

 

  2030     

Sub-Watershed Base Year - 2000 Business as Usual Ag Preservation Bluff Preservation Bio-Collaborative 

071300011602 15.6% 21.7% 21.3% 21.4% 27.2% 

071300011704   6.7%   8.2%  8.2%   8.2%    10% 

071300011705    12% 15.9%   16% 15.6% 18.3% 

071300030205 10.3% 13.3% 13.2% 13.3% 16.6% 

071300030206 29.1%    33% 33.4% 32.5% 34.5% 

071300030304 17.9%  20.2% 20.4% 20.1% 21.5% 

071300040801   7.9%   9.2%   8.8%   9.4% 10.5% 
Table 4-2: Impervious Surface Projections by Sub-Watershed in Peoria Region under Various 
Scenarios. 

 

 

School Districts 

Another example of spatialization is examining how school districts can be affected by future 
growth.  In Peoria, projected population increases based on LEAM results were calculated for 

each school district in the region (Figure 4-9).  Based on these population projections and infor-

mation on the number of school-age children per household, student population projections were 

determined for each school district.  These student populations can then be compared to school 
facilities capacity to estimate when new facilities would need to be provided.  Figure 4-11 indi-

cates that new facilities for one school district will be needed between 2021-2026 for elementary, 

middle, and high schools. 
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Figure 4-9.  School District Boundaries in the Peoria Tri-County Region 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

Figure 4-10.  Projected Population Increased by School District 
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Figure 4-11.  Comparison of School Age Population Growth and School District  

Facility Capacity. 

 
 

Population Allocation Model 
 

The LEAM population allocation model establishes the relationship between cells and 
people.  It uses LEAM cell location information, census data and demographic information to 
determine a more accurate assessment of population and households in the region.  The key 
to the approach is determining an estimate of people per residential cell (30m * 30m), i.e. 
population density.  A proper estimation of population density based on the density of housing 
in any spatial location is critical for spatially distributing regional population growth.  Popu-
lation densities are also critical for land use change impact assessments that use household 
information extracted from a land use map to determine per capital impacts.  In the generic 
LEAM approach, the spatial variation of housing densities were not calculated, which re-
sulted in uniform densities across different districts within the region.  This deficiency led to 
other, related problems.  When calculating the impacts of residential growth on school dis-
tricts for example, uniform densities, result in uniform economic impacts.  The effort required 
to solve this problem is not trivial due to technology limitations and data availability.  The 
following can be considered a ‘first order approximation’ approach to solving this dilemma. 
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Methods 
According to the 2000 Census data, household size in metropolitan regions varies widely.  We 

also found that lot size appears be less of a factor in this variation, which might be better ex-
plained by the density residential units.  Using a Census block group as the unit of analysis, we 
compute:  

Population Density = Average Housing Unit Density * Household Size 
Where:  

• Population Density : average people per residential cell (people/cell); 

• Household Size : average household size in a Census block group (People/Household); 

• Average Housing Unit Density = High Intensity Residential % * High Intensity Resi-

dential Density + Low Intensity Residential % * Low Intensity Residential Density; 

• Residential Density : housing units per residential cell (units/cell); 

 
Average household size can be determined from the 2000 long-form dataset.  This data will 

also help in determining housing unit types and numbers for each block group.  From this in-
formation we can deduce the proportion of high- and low-density residential units.  This en-
ables the LEAM population allocation model to calculate population characteristics of any re-
gion easily and efficiently.  One drawback to this approach is the static nature of the model and 
the fact that current trends are used in the analysis. This makes it difficult to infer future trends 
and projections.   
 

To address this weakness we conducted an analysis of historic household size using a logis-
tic decay model (see Figure 1) to help project the household size calculations.  In this analysis: 
H is Household size; H0 is the initial household size; K is a constant error calculation; r is a de-
cay rate; and t is time.  

rte
H
K
KH

−−−
=

*)1(1
0

 

Based on the household size projection, we can then estimate the population density for fu-
ture projections.   
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Results for St. Louis Region 
The population density of each block group in the St. Louis region was calculated using this 

approach. Table 4.3 shows a typical calculation.  Figure 4-6 is a map of the region with each 
block group calculation delineated.  Figure 4-7 is a projection of future population density to the 
year 2050 using the logistic decline model noted in figure 4-5.  

 
The LEAM population allocation model establishes the relationship between cells and peo-

ple.  It uses LEAM cell location information, census data and demographic information to deter-
mine a more accurate assessment of population and households in the region.   
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Statistic Information Value 
Number of Block Groups 1915 
Minimum Value  0.00 
Maximum Value 4.76 
Mean 2.16 
Standard Deviation 0.49 

 
 

 
 
 

Table 4-3. Population Density Information of St. Louis Metro Region 

Figure 4-6. Population Density Map of Metro St.Louis Year 2000 
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Figure 4-7. Household size of St. Louis Region Year 1970 - 2050 



 

 64 

5    LEAM Impact Models 
The result of LEAM run is maps that show the land use change for a given scenario – provid-

ing an answer to “what if this happens.”  However, this information is not that useful unless you 
can answer the follow up question – “so what?”  In other words, the results of LEAM must be 
used to look at particular impacts of growth beyond the land use change.   LEAM has developed 
several models that estimate some key impacts of land use change – transportation congestion, 
fiscal impacts, and water quality.  Economic impacts, such as employment and income, are dis-
cussed in the Economic Driver section in chapter 1 of this report.  Several others are currently in 
development including air emissions,  
 
 
Transportation Impacts 

Highway Congestion 
The impact of land-use change on transportation infrastructure and vice versa is of key im-

portance. LEAMtrans helps in assessing the changes in travel demand in the region due to growth 
in region, relocation of people or introduction of new roads. The impact is measured in terms of 
an index ‘volume-to-capacity’ (V/C) ratio derived from the traffic volume and capacity of the 
roads. As this ratio approaches a threshold value of 0.80, we assume that the road is getting con-
gested.  This congestion then further drives a change in land-use through changed attractiveness 
of the affected areas.  

 

Congestion Methodology 

To determining the impacts of land-use change on transportation systems, LEAMtrans uses 
an approach similar to the conventional four-step Travel Demand Modeling approach. In this 
method, ‘rampsheds’, as shown in figure 13, are utilized in lieu of ‘Traffic Analysis Zones 
(TAZ)’. Rampsheds are areas around a chosen ramp, to which people are more likely to go than 
any other chosen ramp. It is developed based on travel-time friction through cells (cost-allocation 
method).  Rampsheds, like watersheds, represent a ‘draining’ of vehicles onto the main highway 
system.  These ramps form the nodes, and the roads connecting two adjacent nodes form the links 
in the road network. For the analysis, only US and Interstate highways in the region were chosen. 

 
The road network is used in the pre-processing stage to obtain the routes in the road network 

between all pairs of origin and destination nodes. The inputs for the LEAMtrans are: 
• Land-use map  
• Road network 
• Rampshed map 
• Trip Generation rates 
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These maps are processed using a programming code designed to emulate the four-steps of 
Travel Demand Modeling and produce traffic counts for the evening (PM) peak hour on the 
roads. The volumes on the roads are divided with the respective traffic capacity to obtain the V/C 
ratio for the road. The V/C ratio thus represents the level of utilization of the road and indicates 
whether the road is running congested or approaching congestion or has un-congested flow. Thus 
an impact due to land-use change on transportation is measured (Figure 4-1). 

 

 
Figure 4-1.  A diagram of the St Louis regional road network with calculated congested 

speeds over road capacity in the year 2030.  Red networks are considered con-
gested and green networks un-congested. 

 
 

Fiscal Impact 
After considering various approaches already attempted by others, we tested a regression 

model based on per-capita expenditure in the year 2000 using a sample of 73 jurisdictions in the 
Illinois portion of the St. Louis metropolitan area.  Our analysis suggests that there are not 
economies of scale: per-capita expenditure increases as the number of households increase. At the 
same time, jurisdictions with greater population densities have lower per-capita expenditures, and 
jurisdictions with greater economic activity (as measured by per-capita sales tax collection) have 
higher per-capita expenditures.   
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Table 4-1: Fiscal impact scenarios for Belleville.  The results of three scenarios: population 
density increases 50%; households increased by 50% (with population density remaining 
constant); and per-capita sales taxes increased by 50% (households and population density 
remaining constant). 

Total
What If? From To Change % Amount Expenditure
50% increase in population 
density 848 1272 People/Sq.Km ($113) -17.3% $542 ($6,521,868)
50% increase in number of 
households 17,603 26,405 Units $27 4.1% $682 $1,122,625
50% increase in per-capita 
sales tax collected $154 $231 $/Person $46 7.0% $701 $1,911,900

Change Per-Capita Expenditure

 
 
Table 4-1 illustrates the results of three scenarios for Belleville, IL (pop. 41,410). First, what 

if the population density were to be increased by 50% (along with a proportional decrease in land 
area to keep population at its present level)? Second, what if the number of households were in-
creased by 50% (with a proportional increase in the land area to keep population density at its 
present level)? Third, what if per-capita sales tax were to be increased by 50% (keeping number 
of households and population density constant)? 

 
This model was also used to assess the fiscal impact of land-use change around Belleville in a 

generic LEAM simulation of conditions in the year 2015. Table 4-2 compares two future scenar-
ios with and without annexation to capture adjacent growth; the annexed area is indicated in Fig-
ure 4-2 shows Belleville’s existing municipal boundary laid over land-use in the year 2015. The 
hatched area southwest of the city represents an area that might be annexed by the city to capture 
development, especially commercial growth. 

 
Development of the fiscal impact model is continuing; the LEAM group is currently develop-

ing methods to look at the revenue side of the government budget.  This analysis combined with 
the change in expenditures from increased residential development will allow for the calculation 
of a break-even home value – the home value necessary to provide enough property tax (given 
that other revenue sources remain the same per capita) so that revenues equal expenditures for a 
specific jurisdiction (municipality, school district). 
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Figure 4-2. Belleville municipal boundaries and a randomly chosen area of 

potential annexation that occurs in 2015). 
 

Table 4-2: The fiscal impacts of the Belleville growth and annexation (2015) 
scenario depicted above. 

Without 
Annexation

With 
Annexation Difference

Population 59,861 64,963 5,102
Households 24,640 26,550 1,910
Per Capita Sales Tax $142 $156 $14
Per Capita Expenditure $562 $605 $43
Total Expenditure $33,641,882 $39,302,615 $5,660,733  
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Water Quality 
Urban land use transformation is having a dramatic impact on our local streams and rivers. 

Urbanization increases imperviousness, which in turn increases surface runoff. Urbanized surface 
runoff contains a large amount of pollutants such as nutrients and sediments. These increases in 
non-point source (NPS) pollutants are having a negative affect on surface water quality. 
LEAMwq represents a method for quickly assessing the impacts of urbanization on surface runoff 
and NPS pollutant loading. Preliminary assessment with a simple model can provide quick 
screening of the impacts of urbanization and identify the need for more advanced modeling 
(Bhaduri and others, 2000).  

 

Water Quality Analysis 

A simple export coefficient modeling approach can predict pollutant loading as a function of 
the export of pollutants from each source in the study area (Johnes, 1996). LEAMwq integrates 
LEAM with L-THIA, the Long-Term Hydrologic Impact Assessment.  L-THIA is a GIS-based 
export coefficient model developed at Purdue University with support of US Environmental Pro-
tection Agency. L-THIA calculates mean surface runoff and NPS pollutant loading for a given 
region and a period using daily precipitation series, a land use map and a hydrological soil group 
map. The pollutants selected for this study are total nitrogen (TN), total suspended particles 
(TSP), and total phosphorous (TP).  

 
The model was tested with land use maps simulated by LEAM from 2005 to 2030 for the St. 

Louis region with five-year intervals and 1961-1990 daily precipitation series. LEAM was run 
with three economic scenarios: base, high and low growth. The L-THIA simulation was con-
ducted with each scenario set of land use map series provided by LEAM. TN results are described 
hereafter. 

 

Results of Water Quality Analysis 

The TN output with changing land use in units of tons is shown in Figure 4-3. Under base and 
low economic growth scenarios, TN increased steadily at decreasing rates. The low growth sce-
nario started at a lower point than the base scenario, and slightly exceeded the base scenario in the 
year 2030. The TN loading under the high growth scenario kept decreasing until year 2015, and 
then it began to increase substantially up to year 2020, and eventually settled down between years 
2020 and 2030. This can be understood by examining land use change trends between 2005 and 
2030. The trend of major land use change under different scenarios. Agriculture, Grass/Pasture, 
and Forest decreased steadily and dramatically, whereas the area of Low Density Residential land 
steadily increased. By contrast, changes in Commercial/Industrial/Impervious were very irregular 
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under the high scenario. The area first decreased steadily to year 2015 and then increased abruptly 
to year 2020. After 2020, it kept increasing but at a lower rate.  
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Figure 4-3. Predicted total nitrogen (TN) under base, high, and low economic growth 

scenarios from year 2005 through year 2030 
 
The decrease-increase trend of pollutant loading under the high scenario reflected the compli-

cated interactions between the land use specific pollutant loading and the land use transforma-
tions. In the first half of the period, the pollutant loading decreased due to loss of Agriculture, a 
type of land associated with the highest pollutant loading. On the other hand, when the effects of 
increased urban land cover dominated in the second half, the pollutant loading would increase. 
The runoff pattern is presented in Figure 4-4. Again, the high scenario had a different trend from 
low and base scenarios. Under the high economic growth scenarios, even though the runoff was 
increasing throughout the simulation period, there was an abrupt increase between year 2015 and 
year 2020, as indicated by a steeper slope. It shows the sensitivity of runoff to changes in imper-
viousness from Commercial/Industrial land uses. 
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Figure 4-4.  The water quality impacts of three LEAM land use scenarios in the metro St Louis 

region.  High growth scenarios increase total nitrogen levels in the study watershed. 
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Appendix 
 
Developing a Base Map  
 
Land Cover Data Clean-up Analysis 
 

Several techniques have been developed to verify the base year land cover maps used to 

run the model for the St. Louis region.  Combining several data sets produced the final 

LEAM Illinois base-map.  The 1993 USGS NLCD data was first merged to the 2000 Illinois 

data to update urban land uses and reclassify errant cells. The USGS NLCD classification 
coding system was adopted as the final coding system. Road networks are then overlaid onto 

the map with a new classification designation.  A methodical manual process of localizing 

and verifying the resulting map was then undertaken.  This work was completed by regional 

planners using aerial photos, available local maps, and personal knowledge about the region.  
The final steps toward base-map production include the calibration of the now updated map 

to available 2000 census data. 

 

To help verify the 2000 base data map. Census data was compared mapped data at the 
block level.   In Illinois large amounts of random development (noise) initially existed in the 

map.  Census data reveals from 1993 to 2000, just over 9,000 people were added to the re-

gion.  Our base-map shows 16,000 new residential cells over the same time period.  In Mis-

souri, large amounts of densely developed tracts, have consumed all developable areas.  In 
the region from 1993 to 2000, 500,000 new residential cells were found with only 60,000 

new people.  Although some of this can attributed to migration out from the city center, by 

comparing populations and households in each census block with the number of cells present 

in 2000, we can asses how many developed cells should be present to satisfy census calcula-
tions.   

o Compare LU data to census data,  

o Remove any residential cells from the 1993-2000 difference map 

in census blocks where 2000 census population growth is negative or zero. 
(267,000 cells removed - 76,000 in IL (Figure A-1) - almost 200,000 cells in 

MO). 

o Ignore small or sparsely populated census blocks where the cell 

to population ratio is less than 2.0 
o For all other census blocks, compare the remaining 2000 LU 

residential cell counts with 2000 census population data.   
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 Increase or decrease the number of cells required to sat-
isfy census counts.  

 Use LEAM probability maps to place the required cells 

within the census block. 

 Highest development probabilities receiving the required 
cells  

 

 
Figure A-1: A sample map depicting changes in the IL base map when noisy satellite data is cleaned 

 
Figure A-1 is a sample map depicting changes in the IL base map when noisy satellite data is 

cleaned using a 2 mile municipal buffers as an exception and removing all other rural develop-
ment that shows up in the 2000 data that is not present in the 1993 data.   Blue Cells are 2000 data 
representing development.  Red cells have been removed. 
 

East St Louis 


