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Abstract

The Crop Environment Resource Synthesis (CERES) models have been developed and
utilized for the last 30 years to simulate crop growth in response to climate, soil,
genotypes and management across locations throughout the world. We reviewed
215 papers found in the literature that contained field observed data where the CERES
models were tested. Over 30 simulated variables of the CERES models have been
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tested in 43 different countries under various experimental treatments. Across all
testing conditions, the CERES models simulated grain yield with a root mean square
error (RMSE) of less than 1400 kg/ha (∼10% relative error, RE), 1200 kg/ha (∼20% RE)
and 800 kg/ha (∼10% RE) for maize, wheat, and rice, respectively. Phenological devel-
opment was simulated with less than 7 days difference from the observations in most
studies. The CERES models simulated aboveground biomass, harvest index, evapo-
transpiration, and soil water reasonably well too. The simulations of grain number (up
to 4340 root mean square error, RMSE), grain weight (up to 22% error), intercepted
photosynthetically active radiation (IPAR, up to 0.41 MJ/plant), leaf area index (LAI,
31.9% error), soil temperature (over 10°C difference), and nitrogen (N) dynamics (up to
80% error) were less accurate. In fact the average error of CERES model simulations
tends to be higher under marginal crop growing conditions such as extreme heat or
cold, water and nutrient deficit conditions.

1. INTRODUCTION

Food security is one of the most important ecosystem services offered

by agriculture (Reid et al., 2005; Zhang et al., 2007). Due to the high

demand for food, there has been an expansion and intensification of agri-

culture (Matson et al., 1997). Considering the increasing food demand by

the rising population, the agriculture sector is facing the big challenge to

increase food crop productivity. Since about two-thirds of the total daily

calorie-intake is from the three staple grains of wheat, rice, and maize,

increasing their yields is mandatory (Cassman, 1999). Although we have

witnessed extensive efforts in agricultural experiments that aimed at increas-

ing yield and minimizing environmental impact, the results are often site

specific and subject to spatial and temporal variability affected by weather,

soil, and crop cultivars (Basso et al., 2011). This variability in space and time

makes it difficult to transfer cropmanagement information from one location

to another for agricultural decision making (Jones et al., 1998). To under-

stand the complex crop-soil-weather system and to facilitate farm-level

decision making processes, crop models were developed to help provide

the larger combinations of crop yield outcomes as influenced by variety

and management for the high degree of variability in weather and soils than

would be possible using trial and error experiments. The Crop Environment

Resource Synthesis (CERES)models were developed in the early days of the

information age. CERES-Wheat (Otter and Ritchie, 1985, Ritchie, 1985),
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CERES-Maize (Ritchie, 1986, Ritchie et al., 1986b, Jones et al., 1986),

and CERES-Rice (Ritchie et al., 1986a) were initially developed mainly

to simulate grain yield, but later served also as a decision support tool when

DSSAT became available (Jones et al., 2003). The CERES models are a

process-based system that simulates crop growth and development on a

daily time step. The major components of phenology, growth, soil water,

and nitrogen balance enable the models to simulate crop yield, using

the soil water and nitrogen dynamics to provide a limitation on yield.

Maize, wheat, and rice are the most tested and used, but models of barley,

grain sorghum and pearl millet are included in the CERES models

(Ritchie et al., 1998).

While Timsina and Humphreys (2006) reviewed the performance of the

CERES-Rice and CERES-Wheat models in the rice-wheat systems, there

lacked a comprehensive reviews on the CERES model performance for

staple crops. Therefore, the objective of this paper is to summarize published

results of worldwide tests of the CERES-Maize, CERES-wheat, and

CERES-Rice providing a review of (1) the crop and soil variables that have

been tested for the models, (2) the conditions under which those parameters

were tested, and (3) the accuracy of the simulated variables.

Testing of models involves comparison of simulated with measured

results.When themodel results differ frommeasurements, the apparent error

can be a function of the inaccuracy of one or more of the model functions

and the resulting feedback, but much of the difference can often be the result

of inaccurate input data or initial conditions. The CERES models are

intended to be applicable in any weather, soil, and management conditions

for any cultivar in which the genetic coefficient information is known and

should not require calibration in space and time. Some critical input infor-

mation for CERES models is often not known and has to be approximated

by various procedures. The greatest uncertainty of inputs has proven to be

the depth of effective rooting, one or more of the genetic coefficients, and

the initial conditions of the soil, water, and nitrogen. When crops are grown

under unlimited water and nitrogen, the soil properties and initial conditions

are less critical for more accurate simulation. If there is no independent

knowledge about the genetic coefficients, the model is often calibrated to

make the phenology and yield components match the data sets. The initial

conditions are frequently identified by trial and error simulations or through

sophisticated parameter estimation techniques to obtain better agreement

with the final measurements.
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2. METHODS

The reviewed articles were obtained from the ISI Web of Science

database. All peer-reviewed articles in the database that met the following

criteriawere selected for this metadata synthesis paper: (1) written in English,

(2) published by Dec. 2014, and (3) primary studies had both field observa-

tions and simulation results obtained from the CERES models.

3. RESULTS

A total of 215 field studies tested the three CERES models. Of these,

111 studies tested the CERES-Maize model, 104 studies tested the

CERES-Wheat model, and 26 studies tested the CERES-Rice model.

The CERES models have been validated in 43 countries across all con-

tinents, except Antarctic (Fig. 1). The model simulations have been tested

under a wide range of climate conditions: monsoonal (Liu et al., 2013),

semiarid tropical (Carberry et al., 1989), subhumid, subtropical (Behera

and Panda, 2009), Mediterranean (Hasegawa et al., 2000), oceanic and
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Figure 1 Locations where the CERES models have been validated and the number of
studies in each model validation country.
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continental (Johnen et al., 2012), cold winter, dry summer (Thaler

et al., 2012), and humid temperate (Otegui et al., 1996). The validation

studies have been conducted extensively in the United States (64 studies),

China (27 studies), and India (18 studies) under varied treatments, such as

nonlimiting irrigation and fertilization; various irrigation water and fertil-

izer amounts, timings, and application methods; sowing dates; population

densities; CO2 concentrations; tillage methods; and management intensi-

ties (Fig. 1). Grain yield, aboveground biomass, leaf area index (LAI),

anthesis, and maturity have been extensively tested. Variables regarding

water balance (evapotranspiration and soil water content), nitrogen balance

(soil nitrogen and crop nitrogen uptake and content), phonological stage

(grain filling, silking, and panicle initiation), and other biomass compo-

nents (leaf biomass, straw biomass, and shoot biomass; and harvest index)

have been less extensively validated (Figs. 2–4).

3.1 Crop Phenology

3.1.1 CERES-Maize
The CERES-Maize model has been tested regarding sowing date (two

studies), sprouting (one study), days from seedling emergence to the end

of the juvenile stage (one study), leaf appearance (one study), flowering date
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Figure 2 The number of research that validated variables in the CERES-Maize.
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(two studies), anthesis (nine studies), silking (13 studies), grain filling (two

studies), silking to maturity (one study), maturity (19 studies), and growth

duration (three studies) (Table 1 and Table 2). Strzepek et al. (1999) and

Wang et al. (2012) showed that the simulated planting dates for maize grown

in Iowa andMissouri (USA) and in one experimental maize station in China

matched well with the recorded sowing dates, with at most 1 day of error.

The predicted days from seedling emergence to the end of the juvenile stage

in a 4-year simulation in Brazil were, on average, 3 days off from the obser-

vations (Liu, 1989). Hodges and Evans (1992) tested the leaf tip appearance

variable and reported that the simulated days were delayed up to 15 days.

Regarding the flowering date simulation, the RMSE was less than 4 days

under the sowing date treatment in Portugal (Braga et al., 2008) and within

7 days of error in twoUS states (Strzepek et al., 1999). Anthesis date has been

well predicted under full irrigation and moderate and severe water stress

treatments in Italy, with simulation errors beingwithin 6 days and percentage

errors ranging from 0 to 2.8% (Ben Nouna et al., 2000; Mastrorilli et al.,

2003). In Brazil, anthesis date simulations across irrigated and rain-fed con-

ditions had a normalized RMSE of 1.6% (Soler et al., 2007). Under irrigated

and rain-fed conditions in a county in Georgia (USA), with fertilization

(141 ∼ 219 kg N/ha application) and planting date (three dates across Mar.)
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treatments, the anthesis date simulations were within 9 days of the measured

data (Persson et al., 2009). The simulated days to anthesis for fertilizer trials in

Ethiopia were within 7 days (Kassie et al., 2014). The CERES-Maize model

has not only estimated anthesis date reasonably well for agriculture experi-

mental stations for over 11 years in Georgia (RMSE = 3.5 days) and

Louisiana (RMSE = 4.3 days) but also captured the inter-annual variability

(Tsvetsinskaya et al., 2003). Under both irrigation and nitrogen application

treatments in Iran and seven irrigation treatments in Pakistan, the days to

anthesis simulations had a normalized RMSE of 2.3 ∼ 2.6% and RMSEs of

less than 2.2 days, respectively (Moradi et al., 2013, 2014; Mubeen et al.,

2013). In terms of maize silking date simulation, the reported errors were

within 4 days for simulations in Nigeria (Jagtap and Abamu, 2003; Jagtap

et al., 1993), Brazil (Liu, 1989), and Venezuela (Maytin et al., 1995). The

reported RMSEs were between 2 and 4 days for unfertilized maize
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Table 1 Summary of the CERES-Maize model performances for phenology variable (excluding anthesis and maturity) simulations.

Treatment category Variable name Countries Performance References

Rain-fed/nonirrigated

and well fertilized

Silking Croatia Percentage error: 1% Vucetic (2011)

Nigeria Error: <3 days Jagtap et al. (1993);

Jagtap and Abamu

(2003); Maytin et al.

(1995)

Venezuela

Irrigated with a gradient

of water/different

scheduling time and

well fertilized

Silking United States, Italy Differences: 0 ∼ 4 days Anothai et al., (2013);

Ben Nouna et al.

(2000)

Australia RMSE: 10.6 days Carberry et al. (1989)

Well irrigated and

fertilized with a

gradient of fertilizer(s)

Silking Nigeria Differences: 0 ∼ 14 days Gungula et al. (2003)

Grain filling date Nigeria Differences: 0 ∼ 12 days Gungula et al. (2003)

Well irrigated and well

fertilized onlya
Planting date China Difference: <1 day Wang et al. (2012);

Strzepek et al. (1999)

Flowering United States Error: <7 days Strzepek et al. (1999)

Silking United States RMSE: 4 days Retta et al. (1991)

Argentina RMSE: 6.5 days Caviglia et al. (2013)

China Delay: 1 day Wang et al. (2012)

Grain filling China Error: 1 day Wang et al. (2012)

Growth duration China R: 0.99 Xiong et al. (2007)

Silking to

maturity

Brazil Mean error: 0.5 days; Liu (1989)

Emergence to end

of juvenile

Mean error: 3 days

Silking Error: <4 days

Tip appearance USA Error: 15 days Hodges and Evans (1992)
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Irrigated with a gradient

of water, not fertilized

and other treatments

Flowering date Portugal, Argentina,

United States

RMSE: 6 ∼ 8.26 days Braga et al. (2008);

Otegui et al. (1996);

Tsvetsinskaya et al.

(2003)

Silking Argentina RMSE: 4.3 days Otegui et al. (1996)

Sowing dates Flowering Portugal RMSE: <4 days Braga et al. (2008)

Planting dates, spacing Silking USA RMSE: 2 ∼ 3.4 days Yang et al. (2009)

Planting dates,

fertilization

Growth duration Zimbabwe Error: <3 days Makadho (1996)

aLiterature that did not include treatments were considered as “well irrigated and well fertilized”; for instance, data obtained from local reports.
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Table 2 Summary of the CERES-Maize model performances for anthesis and maturity variable simulations.

Treatment category Variables Countries Performance References

Rain-fed/nonirrigated

and well fertilized

Anthesis Brazil Normalized RMSE: 1.6% Soler et al. (2007)

Maturity Nigeria, Croatia Difference: 1 ∼ 2 days

Percentage error: 2%

Jagtap et al. (1993);

Vucetic (2011)

Nigeria Differences: 7 ∼ 10 days Jagtap and Abamu

(2003)

Irrigated with a gradient

of water/different

scheduling time and

well fertilized

Anthesis Italy Percentage errors: 0 ∼ 2.8% Ben Nouna et al. (2003)

Pakistan RMSE: <2.2 days Mubeen et al. (2013)

Australia RMSE: 10.6 days Carberry et al., (1989)

Maturity United States, Nigeria Differences: <5 days Anothai et al. (2013);

Gungula et al. (2003)

Pakistan RMSE: 3.7 days Mubeen et al. (2013)

Italy Error: 0 day Mastrorilli et al. (2003);

Ben Nouna et al.

(2000)

Australia RMSE: 10.2 days Carberry et al. (1989)

Well irrigated and

fertilized with a

gradient of fertilizer(s)

Maturity United States, China,

Ethiopia

Difference: <1 day Strzepek et al. (1999);

Wang et al. (2012);

Kassie et al. (2014)

Anthesis Ethiopia Difference: <7 days Kassie et al. (2014)
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Well irrigated and well

fertilized onlya
Anthesis Nigeria, Brazil,

Venezuela, Argentina,

United States, China,

Iran

Difference: <4 days

Normalized RMSE: 2.35%

Jagtap et al. (1993);

Jagtap and Abamu

(2003); Liu (1989);

Maytin et al. (1995);

Yang et al. (2009);

Wang et al. (2012);

Moradi et al. (2014)

Maturity China Difference: 1 ∼ 3 days Wang et al. (2012)

Argentina RMSE: 14.3 days Caviglia et al. (2013)

Irrigated with a gradient

of water and fertilized

with a gradient of

fertilizer(s)

Anthesis Iran Normalized RMSE: 2.61% Moradi et al. (2013)

United States Differences: 1 ∼ 9 days Persson et al. (2009)

Maturity Portugal

United States

RMSE: <4 days

Error: 1 ∼ 9 days

Braga et al. (2008);

Persson et al. (2009)

Other treatmentsb Anthesis United States RMSE: 3 ∼ 4 days

Tsvetsinskaya et al. (2003)

Maturity United States,

Argentina

RMSE: <6 days Yang et al. (2009);

Otegui et al. (1996);

Tsvetsinskaya et al.

(2003)

Difference: 9 ∼ 11 daysc Strzepek et al. (1999)

aLiteratures that did not include treatments were considered as “well irrigated and well fertilized”; for instance, data obtained from local reports.
bOther treatments included sowing dates, planting density, spacing.
cAuthors pointed out that the large error might be due to the differences between simulated physiological maturity and observed grain maturity.

A
C
om

prehensive
Review

ofthe
C
ERES-W

heat,-M
aize

and
-Rice

M
odels’Perform

ances
37



experiments in Argentina (Otegui et al., 1996) and sowing dates combined

with spacing treatments in the USA (Yang et al., 2009). Seventy-five percent

silking date simulations had RMSEs of 4 days in the United States

(Retta et al., 1991) and an error of 1 day in China (Wang et al., 2012).

While the good prediction of silking held for rain-fed conditions in

Croatia (error: 1%) (Vucetic, 2011) and irrigation treatments in the United

States (error: 0 ∼ 4 days) (Anothai et al., 2013), the prediction was moder-

ately accurate for nitrogen unavailability treatments in Nigeria (error of

0–14 days) (Gungula et al., 2003), well-irrigated and fertilized condition

in Argentina (RMSE: 6.5 days) (Caviglia et al., 2013), and water stress

treatments in Australia (Carberry et al., 1989). Regarding grain-filling val-

idation, it was reported that the differences between the simulated and

observed values were mostly 0 or 1 and sometimes up to 2 days under a high

nitrogen application rate (90 or 120 kg/ha), but the difference was at least

4 days and sometimes up to 12 days under a low nitrogen application rate

(60 kg/ha) in Nigeria (Gungula et al., 2003). Under irrigated treatments in

China, the simulated grain filling date was only 1 day delayed as compared to

the observed date (Wang et al., 2012). As to maize maturity, the simulated

maturity date was reported to be very close to the observations across various

sowing dates from May to Jun. in Venezuela (Maytin et al., 1995), across

40–100% full irrigation treatments in Colorado (USA) (Anothai et al., 2013),

and under high fertilizer application rates (90 and 120 kg N/ha) in Nigeria

(Gungula et al., 2003). Under water availability treatments in Italy, most

simulated maturity dates were exactly the same as the observations (Ben

Nouna et al., 2000; Mastrorilli et al., 2003). For fertilizer trials in

Ethiopia, the difference between the simulated and the observed days to

maturity was within 1 day (Kassie et al., 2014). Jagtap et al. (1993) and

Vucetic (2011) also reported small errors in maturity date simulations under

rain-fed treatments in Nigeria and Croatia, with 1 or 2 day differences and a

2% difference, respectively. The RMSEs for maturity simulations were

within 6 days under the sowing dates between late-Apr. and mid-Jun. in

treatments in Portugal (Braga et al., 2008), across irrigation treatments

(irrigated at various rates and in various amount) in Pakistan

(Mubeen et al., 2013), across four sowing date treatments in Argentina

(Otegui et al., 1996), in agricultural stations in Georgia and Louisiana for

over 11 years (Tsvetsinskaya et al., 2003), and at 11 locations in North

Carolina (Yang et al., 2009). However, Carberry et al. (1989) and

Caviglia et al. (2013) reported that the average RMSEs for maturity simula-

tions across full irrigation and severe water stress treatments in Australia
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(Carberry et al., 1989) and stress free conditions in Argentina

(Caviglia et al., 2013) were over 10 days. Strzepek et al. (1999) and Jagtap

(2003) reported that the simulation errors ranged from 7 days to 11 days in

the United States and Nigeria, respectively (Jagtap and Abamu, 2003).

Persson et al. (2009) simulated maize maturity dates across irrigated and

rain-fed land with three levels of fertilization treatment and three planting

date treatments in Georgia (USA), and the reported errors ranged from 1 to

9 days for three maize cultivars. Additionally, one study reported the days

from silking tomaturity in a 4-year studyof a Brazilianmaize cultivar and had

a mean error of 0.5 days (Liu, 1989). The simulated growth durations

matched the observations with high correlation coefficients of 0.99 for three

production stations in China (Xiong et al., 2007) and less than 3 days of

errors in Zimbabwe (Makadho, 1996).

3.1.2 CERES-Wheat
The CERES-Wheat model has been tested for sowing date (one study),

sprouting (one study), emergence (six studies), booting (two studies), head-

ing (one study), terminal spikelet (five studies), end of vegetative growth

(two studies), end of year growth (two studies), duration of vegetative period

(one study), flowering date (two studies), anthesis date (29 studies), grain

filling date (four studies), mature date (30 studies), and other phenological

events (five studies) (Tables 3–5). Sowing date and sprouting date were tested

in Northwest China, with simulation errors of 0 and 2 days, respectively

(Wang et al., 2012). Emergence date was tested under a well-irrigated and

fertilized treatment with five sowing dates [day of year (DOY)125, 128, 129,

164, and 296] in New Zealand. Delays in the simulated emergence date of

two wheat cultivars were observed, except for the DOY125 treatment

simulation. The average RMSE for the emergence date of the two wheat

cultivars was 12.1 days (Porter et al., 1993). With 110.5 and 241 kg N/ha

application treatments in Arizona (USA), the 50% crop emergence date

simulation was delayed by 1 day (Thorp et al., 2010b). Chipanshi

et al. (1997) reported that the ratios between the simulated and observed

emergence dates for 30 years in a long-term agricultural site in Canada were

from 0.47 to 0.77 (Chipanshi et al., 1997).When the CERES-Wheat model

was used to simulate spring wheat growth in 24 sites across North America,

including the United States and Canada between 1930 and 1954, the days

from sowing to 50% seedling emergencewere underestimated for 94% of the

sites, with a RMSE of 5.8 days. The model concordance correlation coef-

ficient and bias correction factor were 0.232 and 0.396, respectively

A Comprehensive Review of the CERES-Wheat, -Maize and -Rice Models’ Performances 39



Table 3 Summary of the CERES-Wheat model performances for phenology variable (excluding anthesis and maturity date) simulations.

Treatment category Variables Countries Performance References

Rain-fed/nonirrigated and
well fertilized only

Emergence Canada 23 ∼ 53% earlier Chipanshi et al. (1997)
Terminal spikelet Canada 36% earlier ∼ 62% late Chipanshi et al. (1997)
End of vegetative growth Canada 23% earlier ∼ 44% late Chipanshi et al. (1997)
End of year growth Canada 23% earlier ∼ 43% late Chipanshi et al. (1997)
Grain filling Canada 23% earlier ∼ 41% late Chipanshi et al. (1997)

Irrigated with a gradient
of water/different
scheduling time and well
fertilized

Emergence China Difference: 0 days He et al. (2013)
Phenological events India RMSE: 4 days Sarkar and Kar (2008)

Well irrigated and fertilized
with a gradient of
fertilizers

Emergence United States delay: 1 day Thorp et al. (2010b)
Phenological events Canada RMSE: 3.15 days He et al. (2014)

Well irrigated and well
fertilizeda

Sowing date China Error: 0 day Wang et al. (2012)
Sprouting date Error: 2 days
Emergence United States RMSE: 5.8 days Wang et al. (2009)

China 7 days earlier Liu and Yuan (2010)
Terminal spikelet China 6 days earlier Liu and Yuan (2010)
End of vegetative growth China Difference: 1 day Liu and Yuan (2010)
End of year growth China Difference: 8 days Liu and Yuan (2010)
Flowering China R2: 0.66 Zhao et al. (2011)

China Difference: <7 days Wang et al. (2012)
Grain filling China 4 days earlier Liu and Yuan (2010)
Phenological events China RMSE: 5.6 days

Sowing dates Emergence New Zealand RMSE: 11 ∼ 13.2 days Porter et al. (1993)
Booting United States RMSE: 5.3 days Xue et al. (2004)
Heading United States RMSE: 4.8 days Xue et al. (2004)
Terminal spikelet New Zealand 15 days earlier ∼ 19 days late Porter et al. (1993)

United States RMSE: 4 ∼ 7 days Xue et al. (2004)
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Sowing dates, fertilization
treatments and wheat
rotation systems

Duration of vegetative
growth

Czech
Republic

Error: 3 ∼ 4 days St’astna et al.2002

Sowing dates with
varied temperatures

Duration of grain filling United States RMSE: <5 days White et al. (2011)

CO2 concentration Booting United States 2 days delay Tubiello et al. (1999a)
Terminal spikelet United States 3 days earlier Tubiello et al. (1999a)
Grain filling United States 1 day earlier Tubiello et al. (1999a)
Phenological events Germany Normalized RMSE:

<15%
Biernath et al. (2011)

848 complied field
dataset

Terminal spikelet to
end of leaf growth

Germany Error: <9.1 days Johnen et al. (2012)

aLiteratures that did not include treatments were considered as “well irrigated and well fertilized;” for instance, data obtained from local reports.
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Table 4 Summary of the CERES-Wheat model performances for anthesis simulations.

Treatment category Countries Performance References

Rain-fed/nonirrigated and well

fertilized

Australia Difference: <7 days Alexandrov et al. (2002)

United States, Australia RMSE: 1 ∼ 6 days Xue et al. (2004); Thaler et al. (2012)

United States RMSE: ≥9 days Xue et al. (2004)

Irrigated at varied rates (and

timings) and well fertilized

China Difference:

0 ∼ 2 days

He et al. (2013)

Argentina RMSE: 2.7 days Savin et al. (1994)

Well irrigated and fertilized at

varied rates

United States Difference:

<10 days

Thorp et al. (2010b)

India RMSE: 5.3 days,

normalized

RMSE: 7%

Timsina et al. (2008)

Well irrigated and well

fertilizeda
United States, United

Kingdom, Argentina,

Czech Republic, China

RMSE: 4 ∼ 8 days Ottman et al. (2013); Bannayan et al. (2003);

Caviglia et al. (2013); Trnka et al. (2004);

Liu and Tao (2013)

New Zealand RMSE: 8 ∼ 22 days Porter et al. (1993)

Italy Normalized

RMSE: 6 ∼ 8%

Dettori et al. (2011)

China Error: ≤9 days Xiao et al. (2013); Liu and Yuan (2010)

China Relative absolute

error: <12%

Tian et al. (2012)
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Irrigated with a gradient of

water and fertilized with a

gradient of fertilizer(s)

Mexico Difference:

0 ∼ 8 days

Lobell and Ortiz-Monasterio (2006)

Spain, Bangladesh, India RMSE: 4 ∼ 7 days Timsina et al. (1998); Abeledo et al. (2008)

Not irrigated and fertilized with

a gradient of fertilizer(s)

United States 6 days

earlier ∼ 2 days

late than the

observations

Saseendran et al. (2004)

Germany Percentage error:

<7%

Bacsi and Zemankovics (1995)

CO2 concentration United States Difference: 1 day Tubiello et al. (1999a)

Normalized

RMSE: 4%

Tubiello et al. (1999b),b

Sowing Date Algeria, United States RMSE: 4 ∼ 5 days Rezzoug et al. (2008); White et al. (2011)c

India Difference: ≤9 days Hundal and PrabhjyotKaur (1997)

Spacing United States Average error:

0 days

Tsvetsinskaya et al. (2003)

aLiteratures that did not include treatments were considered as “well irrigated and well fertilized”;

for instance, data obtained from local reports.
bTreatments included CO2 concentration (elevated vs. ambient) combined with two irrigation regimes (well irrigated vs. limit irrigated).
cTreatments included sowing dates combining with varied temperatures.
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Table 5 Summary of the CERES-Wheat model performances for maturity simulations.

Treatment category Countries Performance References

Rain-fed/nonirrigated and well

fertilized only

Australia RMSE: 2.1 days Thaler et al. (2012)

Irrigated with a gradient of water/

different scheduling time and well

fertilized only

Spain 15 days earliera Iglesias et al. (2000)

Mexico Difference: 7 days Lobell and Ortiz-

Monasterio (2006)

Well irrigated and fertilized with a

gradient of fertilizer(s)

India RMSE: 4.5 days, normalized

RMSE 3.4%

Timsina et al. (2008)

Well irrigated and well fertilizedb Argentina, China RMSE: <5 day Caviglia et al. (2013);

Liu and Tao (2013)

United Kingdom,

Czech Public

RMSE: 7.5 ∼ 10 days Bannayan et al. (2003);

Trnka et al. (2004)

China Difference: <10 days Liu and Yuan (2010);

Xiao et al. (2013);

Zhao et al. (2011);

Tian et al. (2012);

Wang et al. (2012);

He et al. (2013)

United Kingdom R2: 0.68 Cho et al. (2012)

Irrigated with a gradient of water

and fertilized with a gradient of

fertilizer(s)

Spain RMSE: 11 days Abeledo et al. (2008)

Bangladesh RSME: 2.3 days Timsina et al. (1998)

Not irrigated and fertilized with a

gradient of fertilizer(s)

United States 4 days earlier ∼ 1 day delay Saseendran et al. (2004)

Germany Difference: >15 days Bacsi and Zemankovics

(1995)
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CO2 concentration United States 2 days delay Tubiello et al. (1999a)

Normalized RMSE: 4.3% Tubiello et al. (1999b)

Sowing Date India 6 days earlier ∼ 3 days delay Hundal and

PrabhjyotKaur (1997)

United States, Algeria RMSE: <5 days White et al. (2011),c,

Rezzoug et al. (2008);

Xue et al. (2004)

United States RMSE: 8 ∼ 9 days Xue et al. (2004)

Pakistan RMSE: 23 days Sultana et al. (2009)

United States Difference: <10 days Southworth et al. (2002)

Spacing United States Average error: 3 days Tsvetsinskaya

et al. (2003)

aThe authors pointed out that the large difference was partly due to they counted harvest date as maturity date, instead of counting physiological maturity.
bLiteratures that did not include treatments were considered as “well irrigated and well fertilized only”; for instance, data obtained from local reports.
cTreatments included sowing dates combining with varied temperatures.
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(Wang et al., 2009). The emergence dates were perfectly simulated for wheat

grown in arid Northwest China under nine irrigation treatments of various

amounts and timings (He et al., 2013). However, the calibrated CERES-

Wheat model simulated the emergence date as being 7 days earlier for winter

wheat grown on six irrigated sites in China (Liu and Yuan, 2010). A booting

date simulation was 2 days delayed under elevated CO2 concentration

(roughly 450–500 ppmv) in the Intensive Agricultural Biome of Biosphere

2 (Tubiello et al., 1999a) and had an averageRMSE of 5.3 days for threewheat

cultivars sown in early- and mid-Oct. (Xue et al., 2004). Xue et al. (2004)

also reported that the mean RMSE between the observed and simulated

heading dates was 4.8 days. The simulated terminal spikelet date was 6 days

earlier in one of the irrigated wheat production regions in China (Liu and

Yuan, 2010) and 3 days earlier under varied, elevated CO2 concentrations

(Tubiello et al., 1999a). Nonetheless, terminal spikelet emergence was up to

19 days late for onewheat cultivar, but up to 15 days earlier for the other under

different sowing date treatments (Porter et al., 1993). A similar study with

different planting dates and threewheat cultivars showed an averageRMSE for

terminal spikelet simulation of 6.2 days (Xue et al., 2004). The reported ratios

of simulated and observed terminal spikelet in dry-land Canada ranged from

0.64 to 1.62 (Chipanshi et al., 1997). The end of vegetative growth and the

end of year growth were studied using fertilized winter wheat field data in

China and Canada. The test results for China indicated that the simulations

were 1 and 8 days different from the observed end of vegetative growth and

end of year growth, respectively (Liu and Yuan, 2010), and for Canada, the

ratios between the simulations and the observations were 0.67 ∼ 1.44 and

0.67 ∼ 1.43, respectively (Chipanshi et al., 1997). The duration of the vege-

tative period was tested in two production regions in the Czech Republic,

yielding underestimated results by 3 or 4 days (St’astna et al., 2002). The

simulated flowering dates in wheat production stations in China were corre-

lated with the observations (R2 > 0.6) and were within 7 days of the observa-

tions (Wang et al., 2012; Zhao et al., 2011). The anthesis date was extensively

tested under a wide variety of treatments and locations. The differences

between the simulated and the observed anthesis dates were within 10 days

with an elevated CO2 concentration (about 440 ppmv) treatment (Tubiello

et al., 1999a); irrigated fields inMexico (Lobell and Ortiz-Monasterio, 2006),

fertilization treatments in two states of the United States, Colorado (with

0 ∼ 112 kg N/ha application rates) (Saseendran et al., 2004) and Arizona

(with 110.5 and 241.0 kg N/ha) (Thorp et al., 2010b); well-irrigated and

fertilized experiments in Arizona, USA (Ottman et al., 2013); 15-year
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simulations in Austria (Alexandrov et al., 2002); and nine irrigation treatments

inChina (He et al., 2013).On average, the simulated anthesis datematched the

observations for three experimental stations in South Carolina (USA) between

1991 and 1995 (Tsvetsinskaya et al., 2003). The average errors regarding the

simulated anthesis date were within 7% across planting dates in late-Sep. and

mid-Nov. (Nov. 10 and 16) when combined with high N rates (213 ∼ 232 kg/

ha) versus no N application in Germany (Bacsi and Zemankovics, 1995) and

three sowing dates in Dec. in Algeria (Rezzoug et al., 2008). The average

RMSEs were within 8 days under different water availability treatments

combined with various nutrient availability experiments in Bangladesh

(Timsina et al., 1998) and Spain (Abeledo et al., 2008), four sites in the

United Kingdom (Bannayan et al., 2003), rain-fed fields in Nebraska

(Xue et al., 2004), no water or nutrient stress conditions in Argentina

(Caviglia et al., 2013), rotation cropping systems with different irrigation sche-

dules and nitrogen application rates in India (Timsina et al., 2008), five wheat

production stations in the Czech Republic (Trnka et al., 2004), elevated tem-

perature combined with various sowing dates (White et al., 2011), and dry areas

in Northeastern Austria (Thaler et al., 2012). The simulated anthesis dates were

within the normalized RMSE of 8% for three wheat varieties in Italy

(Dettori et al., 2011) and under an elevated CO2 concentration treatment

(Tubiello et al., 1999b). Nonetheless, two studies reported less accurate anthesis

simulations under well-irrigated and fertilized conditions in New Zealand and

India,withRMSEs of up to 22 days (Porter et al., 1993) and up to 9 days of error

(Hundal and PrabhjyotKaur, 1997), respectively. When applying the CERES-

Wheat model to wheat production stations in China, the simulated anthesis

dates were within 4.5% error for four of the stations (Liu and Tao, 2013) and less

than 5 days for eight of the stations (Xiao et al., 2013). Using 36 wheat obser-

vation stations and 42 cropping zones inChina,Tian et al. (2012) reported errors

of 6.5% for winter wheat and of 12% for spring wheat (Tian et al., 2012). In

contrast, Liu and Yuan (2010) reported that the simulated anthesis date was

9 days earlier for winter wheat in the Southern North China Plain. In addition,

the root mean square error for the wheat anthesis date simulation in adequate

water availability versus early drought experimentswas reported to be 2.7 days in

Argentina (Savin et al., 1994). For a grain filling simulation, the beginning of the

grain filling date was 1 day earlier than the observation under elevated CO2

concentration conditions (Tubiello et al., 1999a) and, on average, 4 days earlier

for four wheat production stations in China (Liu and Yuan, 2010).

Chipanshi et al. (1997) reported that the simulated to observed beginning of

grain filling date ratios were from 0.77 to 1.41 over 30 years for a long-term
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experiment site in Canada. In a heated environment with varying sowing dates,

the simulated duration of grain filling showed less than 5 days RMSE

(White et al., 2011). Wheat maturity date has been intensively tested under

various treatments and locations as well. Under a variety of growing conditions,

RMSEs for maturity simulation were less than 11 days. Those conditions and

treatments included a combination of water stress (irrigated vs. rain-fed)

and nutrient stress (with vs. without nitrogen application) in Spain

(Abeledo et al., 2008); water- and nutrient-stress-free fields in Argentina

(Caviglia et al., 2013); a heated environment (White et al., 2011); four locations

over 3 years in the United Kingdom (Bannayan et al., 2003); five wheat pro-

duction stations in the Czech Republic (Trnka et al., 2004); wheat rotated with

rice or maize or soybean in various soils (Timsina et al., 2008); four wheat

stations in China (Liu and Tao, 2013); six irrigated wheat production stations in

theNorthChina Plain (Liu andYuan, 2010); ninewheat cultivars sownon three

dates in Dec. (Rezzoug et al., 2008); eight planting dates ranging from Aug. 24

to Nov. 3 with seeding rates of 151, 301, 452, and 603 seeds/m2 in Wisconsin

(Dahlke et al., 1993; Southworth et al., 2002); eight winter wheats in theNorth

China Plain (Xiao et al., 2013), early- and mid-Oct. sowing dates in fertilized

plots in Nebraska (Xue et al., 2004); two locations Henan Plain in China

(Zhao et al., 2011); winter wheat in dry regions in Austria for 9 years

(Thaler et al., 2012); combinations of two water regimes (well-irrigated and

rain-fed) and three nitrogen application regimes (0, 90, and 135 kg/ha) in

Bangladesh (Timsina et al., 1998); and fertilized fields with various spacings in

the Southeastern United States (Tsvetsinskaya et al., 2003). Studies in China

showed awell-simulatedmaturity date.One study showed that in 36 production

stations inChina over 38 years, the relative absolute errors for bothwinterwheat

and spring wheat were within 10 days (Tian et al., 2012), and two other studies

showed that the errors were within 2 days in their studied regions (He et al.,

2013; Wang et al., 2012). Under fluctuating and elevated CO2 concentrations

(about 440 ppmv) (Tubiello et al., 1999a), sowing dates ranging fromDOY310

to DOY354 (Hundal and PrabhjyotKaur, 1997), and fertilization application

treatments (0 ∼ 112 kg N/ha) in rain-fed fields in the United States

(Saseendran et al., 2004), the simulated maturity dates were within 7 days of

error. Furthermore, the normalized RMSE was reported to be 4.3% for a

maturity simulation performed with a 550 ppm CO2 concentration treatment

(Tubiello et al., 1999b). However, the differences between the simulation and

the observation were over 15 days for both fertilized (with 213 ∼ 232 kg N/ha

rate) and unfertilized wheat maturity simulations in four sites in Germany (Bacsi
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and Zemankovics, 1995), experimental trials in Pakistan (Sultana et al., 2009),

and wheat production sites in Spain (Iglesias et al., 2000). Lobell and Ortiz-

Monasterio (2006) indicated that in a no-water-stress situation, the CERES-

Wheat simulated maturity date was exactly the same as the observed one,

while in a water-stress situation, the difference between the simulation and

the observation was up to 7 days. In addition, Cho et al. (2012) reported a

high correlation (R2 = 0.68) between the observed and simulated matu-

rity dates. Monzon et al. (2007) reported that the RMSE for simulating

both anthesis and maturity in multiple fields in Argentina was 4.9 days.

The overall phenological stagewas tested in six irrigated wheat production

sites in China and with ambient versus elevated CO2 concentrations

combined with irrigation treatments (adequate vs. limited water supply);

this resulted in an RMSE of 5.6 days (Liu and Yuan, 2010) and a normal-

ized RMSE of up to 15% (Biernath et al., 2011), respectively. The phe-

nological event simulations had RMSEs of 3 ∼ 4 days given rice residue

treatment (removed vs. remained) with irrigation treatment (Sarkar and

Kar, 2008) and under various soils with fertilizer applications in Canada

(He et al., 2014). Nonetheless, a study using 848 field datasets in Germany

showed that the average difference between the simulated and observed

period from terminal spikelet development to the end of leaf growth

and the beginning of year growth could be as large as 9.1 days (Johnen

et al., 2012).

3.1.3 CERES-Rice
The CERES-Rice model has been tested for heading (two studies),

flowering (three studies), anthesis (seven studies), maturity (six studies),

days from panicle initiation and grain filling to maturity (two studies), and

phenological events (one study). Yun, (2003) tested the duration from

transplanting to heading in two crop experiment stations in Korea and

reported that the simulation was in good agreement with the observa-

tions, with an R2 of 0.85. Zhang et al. (2013) reported that the RMSEs

were within 5 days for a heading date simulation in single- and double-season

rice zones in China. Rice flowering duration was tested with 32 field experi-

ments combining various seeding and transplanting dates, planting densities,

nitrogen fertilizer rates, and levels of irrigation across India and eight rice

ecological stations in China, with reported RMSEs of 4.5 days (Mall and

Aggarwal, 2002) and 5.5 days (Yao et al., 2007), respectively. The simulated

days to flowering were within 5% error for four rice varieties under fertilization
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treatments (0 ∼ 150 kg N/ha rates and different timings) in Thailand

(Cheyglinted et al., 2001). The anthesis date has been tested with five irrigation

levels between 625 and 1225 mm and a seedling density between 1 and 3

seedlings per hill in Pakistan, and the simulated anthesis date was only 1 day

earlier than the observed date (Ahmad et al., 2012). In contrast, the percentage

error for the simulated anthesis dates given a late-Aug. seeding date treatment

was 6.85% (Babel et al., 2011). The anthesis date has also been tested with water

availability treatments combined with various nutrient availability experiments

in Bangladesh (Timsina et al., 1998), six rice production areas in China

(Tao et al., 2008), conventionally tilled soil with residual removal and direct-

seeding, mulch-based cropping systems combined with manure, NPK1, and

dolomite fertilizer applications in Madagascar (Gerardeaux et al., 2011), with

RMSEs ranging from 4.2 to 8.2 days. In addition, the differences between

the simulated and observed days to anthesis under open field and elevated

CO2 treatments were between 2 and 4 days (Satapathy et al., 2014). The

inter-annual variability of the rice anthesis date for three agricultural experiment

locations in the Southern USwas well-reproduced by the CERES-Rice model

(Tsvetsinskaya et al., 2003). The simulated maturity dates matched perfectly

with the observations under irrigation and planting density treatments

in Pakistan (Ahmad et al., 2012). The reported RMSEs for maturity date

simulations were within 10 days for tillage treatments in Madagascar

(Gerardeaux et al., 2011), six rice production stations in China (Tao et al.,

2008; Zhang and Tao, 2013), and irrigation combined with fertilization treat-

ment in Bangladesh (Timsina et al., 1998). Over 500 experimental rice stations

in China, the RMSE for maturity simulation ranged from 10 to 25 days

(normalized RMSE: 6.5 ∼ 19.8%) (Xiong et al., 2008b). The simulated days

to the appearance of panicle initiation, flowering and maturity matched well

with the observations given varying nitrogen application rates (0 ∼ 150 kg/ha)

in India, resulting in 3 ∼ 5 days of errors (Swain and Yadav, 2009). The simu-

lated period fromgrain filling tomaturitywas reasonably accurate and correlated

with the observations (r2 = 0.72) in Korea (Yun, 2003). Phenological events

were tested with transplanted and direct-seeded rice with wheat residue and

various nitrogen input treatments in rain-fed fields in India. TheRMSEs for the

phenological event simulations were 4 ∼ 5 days and 10 ∼ 11 days for trans-

planted and direct-seeded rice, respectively (Sarkar and Kar, 2008). A summary

of the phenological variable validations for the CERES-Rice model can be

found in Table 6.

1NPK: 11% N, 22% P2O5, 16% K2O (Gerardeaux et al., 2011).
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Table 6 Summary of the CERES-Rice model performances for phenology variable simulations.

Treatment category Variables Countries Performance References

Rain-fed/nonirrigated and well

fertilized

Anthesis Thailand Percentage error: 6.85% Babel et al. (2011)

Well irrigated and fertilized with a

gradient of nitrogen inputs

Flowering Thailand Percentage error: <5% Cheyglinted et al. (2001)

Maturity India,

China

Error: within 3 ∼ 5 days

RMSE: 10 ∼ 25 days

Swain and Yadav (2009);

Xiong et al. (2008b)

Well irrigated and well fertilizeda transplanting to

heading

Korea R2: 0.85 Yun (2003)

Grain filling to

maturity

R2: 0.72

Heading date China RMSE: 5 days Zhang and Tao (2013)

Flowering duration China RMSE: 5.5 days Yao et al. (2007)

Anthesis China RMSE: 5.6 days Tao et al. (2008)

Maturity China RMSE: 2 ∼ 6.6 days Zhang and Tao (2013);

Tao et al. (2008)

Irrigated with a gradient of water and

fertilized with a gradient of

nitrogen

Anthesis Bangladesh RMSE: 4.3 days Timsina et al. (1998)

Maturity Bangladesh RMSE: 2.3 days Timsina et al. (1998)

Over 80 treatmentsb Flowering duration India RMSE: 4.5 days Mall and Aggarwal (2002)

Fertilized, irrigated with varied

amount of water and planted with

varied densities

Anthesis India Difference: 0 ∼ 1 day Ahmad et al. (2012)

Maturity India Difference: 0 day Ahmad et al. (2012)

(Continued )
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Table 6 Summary of the CERES-Rice model performances for phenology variable simulations.—cont'd.

Treatment category Variables Countries Performance References

Management intensitiesc Anthesis Madagascar RMSE: 8.2 days Gerardeaux et al. (2011)

Maturity Madagascar RMSE: 10.2 days Gerardeaux et al. (2011)

Varied planting dates and nitrogen

inputs

Anthesis United

States

Very accurate Tsvetsinskaya et al. (2003)

Open field and elevated CO2 Anthesis India 2 ∼ 4 days Satapathy et al. (2014)

Maturity 3 ∼ 11 days Satapathy et al. (2014)

Direct seeded and transplanted rice Phonological events India RMSE: 4 ∼ 11 days Sarkar and Kar (2008)

aLiteratures that did not include treatments were considered as “well irrigated and well fertilized”; for instance, data obtained from local reports.
bTreatments included varied seeding and transplanting dates, planting densities, spacing, nitrogen inputs and irrigations.
cManagement practices included conventional tillagewith residual removal and direct seedingmulch-based cropping system, and fertilizedwithmanure, NPK and dolomite

combinations.
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3.2 Grain Yield
There were a total of 140 studies on the yield tests for the CERES models.

Themodels have been tested under various experimental conditions, includ-

ing well-managed fields with adequate irrigation and fertilization application

and management treatments such as contrasting irrigation and fertilization

application, varied sowing dates and population density, various planting

methods, and various tillage methods and CO2 concentrations. In general,

the simulated grain yield matched reasonably well with the observed data,

with RMSEs under 1400, 1200, and 800 kg/ha for maize, wheat, and rice

yield simulations, respectively.

3.2.1 CERES-Maize
Eighty-four studies have validated CERES-Maize grain yield simulations

under a range of conditions. Overall, the average RMSEs for grain yield

simulations were mostly ranged between 200 and 1400 kg/ha.

With adequate nitrogen input (240 and 401 kg N/ha) treatments in

Florida, US, the RMSE for the maize yield simulation ranged from 305.6

to 539.5 kg/ha (Lizaso et al., 2011). Under well-irrigated and fertilized

conditions in Iowa, Louisiana, North Carolina, and Colorado (US), the

average RMSEs for the yield simulation were about 1000 kg/ha

(Saseendran et al., 2005; Thorp et al., 2007; Tsvetsinskaya et al., 2003;

Yang et al., 2009). The average normalized RMSE for eight maize cultivars

under irrigated and fertilized treatments in Iran was 3.55%

(Moradi et al., 2014). In contrast, the reported RMSEs were from 1315 to

2194 kg/ha in Georgia (US), Spain, and in a wheat-soybean-maize rotation

system in Argentina (Caviglia et al., 2013; López-Cedrón et al., 2005;

Tsvetsinskaya et al., 2003). Nonetheless, Tsvetsinskaya et al. (2003) and

López-Cedrón et al. (2005) reported that the errors were less than 4% for

yield simulations in the United States. Basso et al. (2007) also reported

RMSEs around 2000 kg/ha for a whole field, high-yield zones, and low-

yield zones. The average RMSE for simulating five maize production sta-

tions in China was 1347.6 kg/ha, but the error was within 20% (Tao and

Zhang, 2010). Liu (1989) also reported that the error for a 4-year maize yield

simulation in Brazil ranged from 10 to 21%, depending on the soil water

initialization. Epperson et al. (1993) showed that for an irrigated field, the

simulated yield was not significantly different from the observed yield at a 1%

significance level. The differences between simulated and observed maize

yields were within 600 kg/ha for 2-year simulations in China and 30-year

simulations in Nigeria (Jagtap and Abamu, 2003; Wang et al., 2012). Studies
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in two locations in Zimbabwe and a sheltered intercropping system in the

United States showed that the simulation errors were within 9% (Makadho,

1996; Mize et al., 2005). The simulations for six locations in Southern

Québec, Canada were mostly within 7.7% for overestimation, but the error

could be up to 82.2% for underestimation (Brassard and Singh, 2007). The

simulated maize yield in experimental stations in Bulgaria was close to the

measured yield (Alexandrov and Hoogenboom, 2000). Wang et al. (2011)

and Ye et al. (2012) showed that the CERES models were able to capture

spatial grain yield variation in China. Link et al. (2006) and Paz et al. (1999)

also showed that the CERES model could explain 60% of spatial maize yield

variability for over 5 years in Germany and 57% of temporal and spatial yield

variability in a farm in theUnited States, respectively. On a regional scale, the

simulated maize yield for over 30 years in a county in Indiana, US, was not

significantly different from that in the report (p = 0.05) (Andresen

et al., 2001). Heinemann et al. (2002) indicated that the grain yield simula-

tion in Brazil was acceptable on a regional scale. The average root mean

square deviations (RMSDs) for yield simulations at a county level for over

9 years in nine states in the United States ranged between 610 and 1520 kg/

ha, with R2 values from 0.05 to 0.8 (Kiniry et al., 1997). Weak correlations

(r ≤ 0.7) between the simulated and the recorded yield at the county level

have been reported for Panama (Ruane et al., 2013) and the United States

(Dhakhwa et al., 1997).

Studies have also tested grain yield under both nutrient and water stress

conditions (ie, the treatment had contrasting irrigation and fertilization

applications or had no nitrogen or no irrigation input). Examining four

levels of nitrogen addition ranging between 20 and 280 kg/ha combined

with two irrigation treatments involving fixed- versus variable-deficit trigger

schedules, Pang et al. (1998) found that the simulated grain yields matched

well with the observations for only the 20 and 100 kg N/ha treatments, not

for the 180 and 280 kg N/ha treatments; the modeled grain yield was about

1.5 Mg/ha higher than the observed yield. Others, however, demonstrated

that the CERES model was able to simulate grain yield accurately across a

range of nutrient treatments (zero to high fertilizer input) combined with a

range of irrigations, with an average RMSD under 360 kg/ha (Binder

et al., 2008), average normalized RMSEs of 5.3% (Moradi et al., 2013),

and an R2 of 0.936 (Pang et al., 1997). Persson et al. (2009) showed that the

simulation errors were 0.55 ∼ 27.9% for irrigated and rain-fed maize with

fertilization and planting date treatments. Sadler et al. (2000) indicated that

under rain-fed conditions in South Carolina, US, with a nitrogen input of
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0 ∼ 220 kg/ha and a planting density of 0 ∼ 15 plants/m2, the simulated

yield matched the measured yield reasonably well for some years, but not

for other years.

The CERES models have also been tested given sufficient nutrients and

varied available water conditions. The available soil water ranged between 30

and 75% of the maximum allowable depletion treatment. Panda et al. (2004)

reported that the averageRMSDs for wheat andmaize grain yield simulation

were under 250 kg/ha. With rain-feeding and 116 kg N/ha application

treatments in Florida, the RMSE for the simulated maize yield was

290.8 kg/ha (Lizaso et al., 2011). Given irrigation treatments from optimum

to moderate water stress in Pakistan, the RMSEs associated with the simu-

lated yield for 2 years were under 560 kg/ha (Iqbal et al., 2011). Across six

irrigation treatments involving 40 ∼ 100% full irrigation in Colorado, US,

the average normalized RMSEwas under 10% (Anothai et al., 2013). Across

irrigated and dry land in nine towns in Texas, US, and two irrigation

treatments (with 421 and 609 mm irrigation) in Spain, the RMSEs ranged

from 630 to 2140 kg/ha (Dechmi et al., 2010; Kiniry and Bockholt, 1998).

Furthermore, across well-irrigated versus severe water shortage treatments in

Australia and in a rain-fed treatment in Spain, the reported average RMSDs

were over 3000 kg/ha (Carberry et al., 1989; López-Cedrón et al., 2008). By

comparison, across three water-availability treatments (no, moderate, and

severe water stress), the percentage errors were within 24%, and the simula-

tions were more accurate for no-water-stress treatment (<12% error) than

for moderate and severe water-stress treatments (>15%) (Ben Nouna et al.,

2000; Mastrorilli et al., 2003). A similar pattern has been reported for

experiments regarding water-stress versus sufficiently irrigated treatments

in Pakistan (Mubeen et al., 2013). The reported average percentage errors

for simulated maize yield on irrigated and dry land in the Corn Belt of the

United States were within 10% (Hodges et al., 1987; Xie et al., 2001). The

grain yield simulation was better in irrigated land than in rain-fed land for

four maize hybrids in Brazil as well. The average normalized RMSDs were

3.78 and 8.29% for irrigated and rain-fed maize, respectively

(Soler et al., 2007). Interestingly, another study of five rain-fed maize pro-

duction stations in the North China Plain found that the model under-

estimated maize yield in dry years with percentage errors of 11 ∼ 64% and

overestimated the yield in wet years with percentage errors of 26 ∼ 55.4%

(Wu et al., 1989). Under rain-fed conditions, three studies reported reason-

ably accurate yield simulations, with errors of 5 kg/ha for 1 year and 357 kg/

ha for the other year in Nigeria (Jagtap et al., 1993), an underestimation

A Comprehensive Review of the CERES-Wheat, -Maize and -Rice Models’ Performances 55



within 10% in Croatia (Vucetic, 2011), and good matching between simu-

lated and observed yields for three sites in Venezuela (Maytin et al., 1995).

For a rain-fed maize yield simulation on a regional scale in China, the

reported RMSD was 1898 kg/ha, and on a farm scale, the simulated yield

was highly correlated (R2 = 0.96) with the observations in four rain-fed

maize production stations (Xiong et al., 2007). For rain-fed fields in the

Czech Republic, the simulated yield was within 17% error, and ignoring

simulations with unusual weather, the simulations were within 12% error

(Žalud and Dubrovský, 2002). In rotational rain-fed fields in Canada with

tile drainage versus controlled tile drainage-subsurface irrigation treatments,

the model efficiencies were 0.987 and 0.998, respectively, and the average

normalized RMSDs were 14 and 4.3%, respectively (Liu et al., 2011).

Tubiello et al. (2002) indicated that the simulated maize yield matched

reasonably well with the observed yield under rain-fed conditions in five

US states. Saseendran et al. (2008) tested the model using 3 years of grain

yield measurements in Colorado, US, under both line-source sprinkler

irrigation (with 23 ∼ 106 mm, 72 ∼ 188 mm, and 46 ∼ 299 mm water)

and rain-fed treatments. The authors reported that the simulated RMSDs

were 982 and 576 kg/ha for irrigation and rain-fed treatments, respectively.

DeJonge et al. (2012) also reported that the model simulated fully irrigated

grain yield more accurately than limit-irrigation grain yield, with 2.47%

relative error for the full-irrigation yield simulation and 12.90% for the limit-

irrigation yield simulation. By contrast, DeJonge et al. (2011) simulated grain

yield under adequate water and limited water treatments on the same exper-

imental location and reported relative errors of 4.1 and 3.4% for full irriga-

tion and limited irrigation, respectively. The grain yield simulation for an

experiment with 100%-, 75%-, and 50%-full irrigation treatments in Turkey

also showed that the model underestimated grain yield by 4.9, 1.7, and 9.4%,

respectively, 1 year and by 4.6, 3.8and 2.3%, respectively, another year

(Gercek and Okant, 2010). The reported mean errors for simulated grain

yields at three sites for 3 years were 850, 933.3, and 333 kg/ha for 50%-,

75%-, and 100%-full irrigation treatments, respectively (Dogan et al., 2006).

In the same research, the model was tested for overirrigated treatments as

well. Given 65%-, 100%-, and 135%-full irrigated treatments for 3 years, the

mean errors associated with the simulated yields were 1400, 600, and

3250 kg/ha, respectively (Dogan et al., 2006). One study in Spain considered

wind speed’s effect on irrigation and compared the grain yield simulations

for nighttime irrigation and daytime irrigation (Salmerón et al., 2012). The

reportedRMSDs for the night irrigation treatment were around 1000 kg/ha
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for 3 years, while the RMSDs for the daytime irrigation treatment were

over 1200 kg/ha for 2 years and 935 kg/ha for another year (Salmerón

et al., 2012). Additionally, the simulated maize yield was highly correlated

(R2 = 0.66) with the reported provincial yield under primary rain-fed con-

ditions in South Africa (Estes et al., 2013).

With fully irrigated but varying nutrient applications between 0 and

140 kg/ha, the average RMSDs in both summer and spring maize yield

simulations were 350 kg/ha lower in China (Binder et al., 2008). In

Florida, US, without nitrogen fertilizer application, the RMSE for the

simulated grain yield was 116.7 kg/ha (Lizaso et al., 2011). When three

nitrogen input rate (300 ∼ 400 kg N/ha) and two sowing date (Oct. 15

and Nov. 15) treatments were applied to two maize cultivars in Chile, the

average RMSE of the simulated yield was 691 kg/ha (Meza et al., 2008).

Twomodel tests with nitrogen treatments of 0 ∼ 150 kg/ha and 0 ∼ 250 kg/

ha in Thailand and Hungary, respectively, indicated that the simulated grain

yields were close to the observations, except for those without the nitrogen

addition treatment (Asadi and Clemente, 2003; Kovacs et al., 1995). Miao

et al. (2006) also showed that with fertilization treatments (112 ∼ 336 kg N/

ha applications), the simulation errors were mostly within 10%, while in a

no-fertilization treatment, the absolute errors were over 20%. In China,

maize yield simulations given 0 and 165 kg N/ha application rates had

normalized RMSEs of 32 and 23%, respectively (Yang et al., 2013).

Similarly, in Canada, while the normalized RMSE for continuous maize

with fertilization application treatment was 6%, the normalized RMSE for

maize without fertilization application was 37% (Liu et al., 2014). In

Ethiopia, with fertilizer addition treatments between 0 and 100 kg/ha, the

model overestimated maize yield by about 300 kg/ha (Kassie et al., 2014). A

study using 50 years of experimental data reported that the grain yield

simulations for maize in fertilized (side-dress nitrogen of 112 kg/ha) versus

nonfertilized fields showed a much higher normalized RMSD in the non-

fertilized field (82%) than in the fertilized field (39%) (Liu et al., 2010).

O’Neal et al. (2002) pointed out that the low correlation (R2 = 0.33)

between the observed and simulated grain yields given 127 ∼ 227 kg N/

ha application treatments was due to lower levels of fertilizer application in

the treatments used. The normalized RMSDs found in the maize grain yield

simulation across 0 ∼ 400 kg/ha nitrogen application treatments in China

were small as well (within 15%) (Liu et al., 2012). In Thailand, using a

treatment with mineral fertilizer application rates and four compost fertilizer

rates (0 ∼ 7500 kg/ha), the grain yield was relatively well-simulated in the
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second and third years (normalized RMSE of 11.1 ∼ 16.9% and an index of

agreement over 0.55) but poorly simulated in the fourth and fifth years

(normalized RMSE of 62.8 ∼ 107.0% and an index of agreement below

0.45) (Pinitpaitoon et al., 2011). A study in Burkina Faso simulating grain

yields given no, inorganic, and organic nitrogen inputs showed that

the simulated yield was 667 kg/ha higher than the observed yield

(Soler et al., 2011). In addition, with fertilization rates of 60 ∼ 120 kg N/

ha, the simulated yields were lower at 60 kg N/ha but higher at 120 kg N/ha

compared to the observed yield (Jagtap et al., 1999).

Other test conditions included various sowing dates, planting densities,

tillage methods, planting methods, soil types, CO2 concentrations, leaf

defoliation, and winter cover crops. Simulating various hybrid maize yields

using four sowing dates in India (Jun. with 10-day intervals between sowing

dates) and Argentina (Aug. 20 ∼ Nov.), the average RMSDs were 559 and

3670 kg/ha, respectively (Otegui et al., 1996; Ramawat et al., 2012). In the

historical field data for sowing date treatments in Illinois, US, the simulated

yield reflected the inter-annual yield variation, and the errors were within

10% (Southworth et al., 2000). In Iran, a validation study was conducted

with three maize cultivars and seven planting densities (3, 5, 7, 9, 11, 13, and

15 plants/m2), and it showed that the average normalized RMSDwas within

9% (Lashkari et al., 2011). However, a study simulating maize yield with

0 ∼ 24 plants/m2 density at two sites in North America showed that the

model did not capture yield reduction in response to the increased planting

density at both sites (Ritchie and Alagarswamy, 2003). The reported nor-

malized RMSDs for simulated yield in China were 9, 16, and 23% for

conventional tillage, reduced conventional tillage, and no tillage, respectively

(Liu et al., 2013). Hook (1994) reported that the grain yield in four types of

soil in Georgia, US, was overestimated by 260 kg/ha on average and that the

error ranged between an underestimation of 1680 kg/ha and an overestima-

tion of 1120 kg/ha. The grain yield simulationwas also tested under nutrient

stress combined with tillage method treatments. One research project used

4-year datasets from maize fields under conventional, rational, and dish

harrow tillage with various fertilizer applications (including calcium chlo-

ride, single super-phosphate, and calcium ammonium nitrate) and calculated

the mean absolute errors as 547, 645, and 1030 kg/ha, respectively, for each

tillage treatment (Samuhel and Siska, 2007). With a 66% leaf defoliation rate

at leaf stages 6 and 12, the CERES-Maize model yield prediction was less

than desirable, with absolute percentage errors of 14 ∼ 34% (Weiss and Piper,

1992). In general, the simulated maize grain yield matched well with the
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observed maize yield across no-cover crop treatments and winter cover crop

(barley, oilseed rape, winter rape, and vetch) treatments in Spain, with

RMSEs ranging from 530 to 2720 kg/ha (Salmerón et al., 2014).

3.2.2 CERES-Wheat
Themodel has been validated under a range of conditions, such as irrigation,

fertilization, sowing date, and tillage treatments.

Under irrigated and fertilized conditions, the simulated wheat yield

accurately depicted the wheat yield trends for several rice-wheat sites in

India (Subash and Mohan, 2012). Several studies of wheat production

showed that the simulated grain yield matched the observed yield well, with

low RMSEs (RMSE: 175 ∼ 588.6 kg/ha), low errors (error: <500 kg/ha),

and high correlations of determination (R2: 0.9) (Liu and Tao, 2013; Liu and

Yuan, 2010; Wang et al., 2012; Zhang et al., 2013; Zhao et al., 2011).

Nonetheless, a large RMSE of 897 kg/ha was reported when comparing

the simulated grain yield for 141 wheat stations in China and the consensus

yield (Xiong et al., 2008a). In general, the model accurately simulated wheat

yields for fertilized wheat fields in Italy (RMSEs: <950 kg/ha) (Basso et al.,

2007, 2009), two sites in Canada over 30 years (R2: 0.7) (Chipanshi

et al., 1999), the Pampas (RMSE: 410 kg/ha, R2: 0.86) (Savin

et al., 1995), wheat production stations in Bulgaria (the observations and

simulationswere scattered around a 1:1 line) (Alexandrov andHoogenboom,

2000), four sites in the United Kingdom and five stations in the Czech

Republic (RMSE: ≤ 930 kg/ha, percentage error: 8.7%) (Bannayan et al.,

2003; Trnka et al., 2004), and a site in Austria over 15 years (percentage

error: <17%) (Alexandrov et al., 2002). The simulated grain yield was

moderately well-matched with the observed yield for three durum wheat

cultivars in Italy (average normalized RMSE of 27%) (Dettori et al., 2011),

eight sites in Canada over 30 years (percentage error: <28%, with one

exception of 58.4%) (Brassard and Singh, 2007), and eight sites in Europe

(RMSE: 1603 kg/ha, agreement index: 0.74) (Palosuo et al., 2011). In

general, the simulated wheat grain yield for four counties in the United

States over more than 4 years matched well with the observations, with R2

values ranging between 0.4 and 0.72 (Rosenzweig and Tubiello, 1996). In

India, the modeled irrigated wheat grain yield was significantly different

from the observed yield, but the yearly yield fluctuation was well-simulated

(Lal et al., 1998). Tian et al. (2012) reported that the percentage error in grain

yield simulation for 36 wheat production stations in China ranged from 11.6

to 33.6%, depending on the calibration methods.

A Comprehensive Review of the CERES-Wheat, -Maize and -Rice Models’ Performances 59



Across available soil water from 10 to 60%, combined with four ratios of

N:P2O5:K2O fertilizer application (0, 80:40:40, 120:60:60, and 160:80:80)

treatments, the average RMSDs were under 250 kg/ha, with a model effi-

ciency of 0.95 (Behera and Panda, 2009).When simulating grain yield under

both fertilizer application and irrigation treatments (five levels of nitrogen

addition of 0 ∼ 150 kg N/ha and irrigation 2 ∼ 4 times per growing season),

the CERES model performed the worst (absolute percentage deviation of

66.45%) when the crop was under the extreme conditions of low irrigation

and no fertilization application, while it performed much better (absolute

percentage deviation ranging between 0.38 and 12.9%) when the crop was at

least fertilized with over 60 kg/ha nitrogen (Singh et al., 2008). Polilaities

and Lazauskas (2010) simulated wheat grain yield in two experiments, one

with 60 kg N/ha applied at various growing stages, and the other with

various management intensities, and they concluded that the CERESmodel

accurately simulated grain yield given 60 kg N/ha fertilizer addition treat-

ment in the years without water shortage but that the accuracy declined

when there was a water shortage or the plot did not receive nitrogen. In

China, across treatments and with various levels of fertilization and irriga-

tion, the normalized RMSE for gain yield was 5% (Ji et al., 2014). With

fertilizer treatment and extreme conditions of both drought and nutrient

deficit, the bias errors were 0.31, 0, and 0.74 for nonfertilized, fertilized at

45 kg N/ha, and extreme conditions, respectively (Touré et al., 1995). In

experiments in Bangladesh with both nutrient (0 ∼ 135 kg N/ha) and water

treatments (rain-fed vs. irrigated), Timsina et al. (1998) reported that the

overall simulated wheat yield matched well with the observations

(RMSD = 467 kg/ha, r2 = 0.95). Compiling 20-year yield data for a

maize-wheat rotation given 0 ∼ 250 kg N/ha input treatments, the maize

and the wheat yields matched with the observations well (R2: 0.82)

(Kovacs et al., 1995). In contrast, another study in Spain with similar water

and nutrient treatments (rain-fed vs. irrigated and fertilized at 0 vs.

250 kg N/ha) showed that the wheat grain yield simulation had an average

RMSD of 1060 kg/ha and that ignoring 1 year of rain-fed data, the average

RMSD would have been reduced to 790 kg/ha (Abeledo et al., 2008).

Similarly, simulating grain yield in an experimental field in India, combining

five irrigation treatments of various amounts and timings and four nitrogen

application levels from 0 to 180 kg/ha, resulted in an average normalized

RMSD of 25%, but this would decrease to 18% if grain yield under extreme

irrigation and nutrient treatment were not included (Arora et al., 2007).

However, Lobell and Ortiz-Monasterio (2006) indicated that the CERES
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model was able to simulate grain yield accurately across ranges of nutrient

(low to high levels of nitrogen application) combined with a gradient of

water applications (irrigation 3 ∼ 5 times), with an average RMSD of

230 kg/ha. Saseendran et al. (2004) indicated that in rain-fed fields in

Colorado, US, with fertilization treatment (0 ∼ 112 kg/ha), the simulation

was more accurate in years in which rainfall was plentiful.

Without nutrient stress but with available soil water ranging between 30

and 75% of the maximum allowable depletion treatment, Panda et al. (2003)

reported that the average RMSDs for a wheat and maize grain yield simu-

lation were under 250 kg/ha. Under rain-fed conditions in India, the

CERES model simulated wheat yield reasonably well, with index of agree-

ment of 0.87 and a model efficiency of 0.57 (Vashisht et al., 2013). For 13US

states, most of the wheat yield simulations were in good agreement with the

recorded yield (Tubiello et al., 2002). Iglesias et al. (2000) found that the

CERES model, in general, overestimated the grain yield across seven sites in

Spain and that the simulation was more accurate for fully irrigated wheat

than dry-land wheat.With awheat yield simulation in Australia over 9 years,

a study showed that the model overestimated yields with high values and

underestimated yields with relatively low values, with an average error of

5.1%, and that the error was partly due towater stress (Eitzinger et al., 2003).

The simulated grain yield across well-irrigated and early drought wheat fields

in Argentina had a root mean square of 20 kg/ha, while the observed grain

yield had a mean standard error of 40 kg/ha (Savin et al., 1994). Two studies

compared the CERESmodel grain yield simulation’s accuracy between fully

available water and limited available water scenarios. Singh et al. (2008)

calculated the RMSDs for grain yield simulations given irrigation 2 ∼ 4

times per growing season and varied levels of nitrogen input for each irri-

gation treatment, and they reported that the RMSDs were over 700 and

220 kg/ha for the two least-irrigated treatments and the most frequent

irrigation treatment, respectively. The errors for simulating wheat yield

under irrigation 0, 1, 2, and 4 times in China ranged from a 390 kg/ha

underestimation to a 150 kg/ha overestimation (Yang et al., 2006b). When

simulating yield under nine treatments of various irrigation timings and

amounts in China, the percentage errors ranged from 1.56 to 8.17%

(He et al., 2013). Although accurate grain simulations under water stress

have been reported, more studies found that grain yield simulation was not

that accurate regarding fully irrigated conditions versus droughts in various

growing stages treatments in New Zealand, with an RMSE of over 3000

(Jamieson et al., 1998). Interestingly, a test conducted in rain-fed
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experiments in Syria and Italy, involving two wheat cultivars for 2 years

showed percentage errors that were mostly over 60% and not more than

21%, respectively (Pecetti and Hollington, 1997). When simulating grain

yield under limited versus full water availability combined with elevated

versus ambient CO2 concentration treatments in Germany, the model effi-

ciency was 0.5 (Biernath et al., 2011). While simulated grain yield matched

well with reported yield for irrigated and rain-fed wheat in Jordan (RMSE

was 586 kg/ha), the simulated yield was weakly correlated with the observed

wheat yield at the county level in Canada (correlation between two stan-

dardized anomalies was 0.59), Kansas (US) (R: 0. 63), and two irrigated and

fertilized fields in Mexico (R: 0.72 ∼ 0.87) (Al-Bakri et al., 2011; Greene

and Maxwell, 2007; Lobell et al., 2005; Mearns et al., 1992). Nonetheless,

the model under-predicted yields for 303 wheat fields in England, with an

average error of 2600 kg/ha (Landau et al., 1998). Nain et al. (2004) also

reported a low correlation (R: 0.67) between the observed and simulated

yield deviations (from the average yields) for three locations in India.

The CERES-wheat model has been tested using contrasting fertilization

treatments and sufficient irrigation. The average RMSEs for the yield simu-

lations were not larger than 471 kg/ha across various amounts and types of

fertilizer application treatments in Pakistan (Bakhsh et al., 2013) and across

five levels of nitrogen input with residue treatment in India (Sarkar and Kar,

2008). A study in India showed that a grain yield simulation across rotation

cropping systems, with a 0 ∼ 160 kg N/ha application being given to one of

the systems, had an average RMSD of 617 kg/ha (Timsina et al., 2008).

Wang et al. (2010) showed that for fertilization, irrigation and tillage treat-

ments, the correlation coefficient between simulation and observation was

about 0.95 for continuous wheat, while that for wheat rotation field was

under 0.85. Zhang et al. (2012) suggested that with a 0 ∼ 112 kg N/ha

application to a wheat field, the simulated and observed grain yields were

not significantly different (P = 0.05). Given 110.5 and 241.0 kg N/ha appli-

cation treatments in Arizona, US, the averageRMSE for the yield simulation

was 7.4% (Thorp et al., 2010b). For six nitrogen input and planting density

treatments in Arizona, the yield simulations were acceptable, with errors less

than 1 Mg/ha (Thorp et al., 2010a). St’astna et al. (2002) found that for ten

treatments, including fertilization rates (40 and 120 kg/ha), different crops

preceding the wheat, and planting dates treatments, the CERES model

could simulate grain yield relatively well when the crop was not infested

by pest. Examining 30 years of field data regarding fertilization and non-

fertilization treatments, Moulin and Beckie (1993) reported that the 1:1 line

62 Bruno Basso et al.



between the simulation and the observation fell out of 95% confidence band,

although there was a significant relationship between the simulated and the

observed yield.

Other test conditions included various sowing dates, planting densities,

tillage methods, planting methods, soil types, and CO2 concentrations. A

study in India in which wheat was sown between DOY310 and DOY354

showed that the model underestimated yield for both early- and late-sown

wheat, with an average percentage error of 21% (Hundal and PrabhjyotKaur,

1997). Studies in Argentina and Pakistan showed that the model simulated

wheat grain yield under varied sowing dates reasonably well, with RMSEs

under 851 kg/ha (Monzon et al., 2007; Sultana et al., 2009). With experi-

ments consisting of 31 sowing dates across Nebraska, US, for 6 years, the

yield simulations for two wheat cultivars had average normalized RMSEs of

39 ∼ 46% and RMSEs of about 1178 ∼ 1266 kg/ha (Moreno-Sotomayor

and Weiss, 2004). With both humid and dry weather in Algeria and using

three sowing dates in Dec., theRMSE for simulating grain yield was 790 kg/

ha (Rezzoug et al., 2008). For simulating grain yield using sowing dates

between late-Aug. and early-Nov. combined with seeding rates from 14 to

56 seeds/ft.2, the simulation accuracy varied greatly, with about 500 kg/ha

overestimation for early sown treatment (before DOY247); good estimation

for DOY255, 266, and 276; and up to 1600 kg/ha overestimation for late-

sown treatments (sown after DOY284) (Dahlke et al., 1993; Southworth

et al., 2002). Two studies tested the CERES model under a planting density

treatment. Across seeding density (350 ∼ 400 seeds/m2) combined with

sowing date (Sep. 20 ∼ Oct. 30) treatments, the average RMSD for the yield

simulation was 240 kg/ha (Ghaffari et al., 2001, 2002). Across five planting

density treatments, two irrigation levels, various levels of phosphorous input,

and various seeding rates in Iran, the normalized RMSE was 5%

(Bannayan et al., 2014). Under a wide range of growing conditions and

various fertilizer inputs, sowing dates, and planting densities in five US states,

themodel tended to overestimate the grain yield (up to 36%), and the average

overestimation was 8% (Tsvetsinskaya et al., 2003). Cho et al. (2012)

reported that the CERES-Wheat model consistently overestimated the

wheat yield in experiment fields given fertilization (48 ∼ 192 kg/ha), sow-

ing date (Sep. ∼ Nov.), and seeding rate (350 ∼ 450 seeds/m2) treatments in

the United Kingdom for 11 years, with an r2 of 0.56. With various rotation

systems, Staggenborg and Vanderlip (2005) reported up to 22% grain yield

overestimation with RMSEs of about 1400 kg/ha for both wheat-sorghum-

fallow and wheat-fallow systems in Kansas, US. Given a range of tillage
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treatments (eg, conventional tillage, surface tillage, minimum tillage, and no

tillage), the model simulated grain yield in Spain (RMSEs: 551 kg/ha for

conventional tillage and 804 kg/ha for no tillage) and Italy well (errors:

700 ∼ 1200 kg/ha) (Castrignano et al., 1997; Soldevilla-Martinez et al.,

2013). Langensiepen et al. (2008) noted that depending on the calibration

process, the RMSE for wheat grain yield simulation in a wheat-barley-canola

rotation field in Germany ranged from 700 to 2200 kg/ha. The grain yield

prediction accuracy was reported for yields from various soil types as well.

Eizinger et al. (2004) showed that the CERES-Wheat model overestimated

the yield by 500 and 900 kg/ha with chernozem and sandy chernozem soils,

respectively, and underestimated the yield by 1500 kg/hawith fluvisol soil. He

et. al. (2014) reported that the RMSEs for wheat yield simulation were under

1688 kg/ha across silt and clay soil sites in Canada. The model has been tested

under ambient versus elevatedCO2 concentrations (550 ppm) in combination

with well-watered versus water-deficit treatments, and the normalized

RMSEs ranged from 9.2 to 23.3% (Tubiello et al., 1999b).

3.2.3 CERES-Rice
Tests regarding the rice yield of the CERES model are relatively less exten-

sive but have still been performed using a range of treatments. The reported

RMSEs mostly ranged from 200 to 1672 kg/ha.

Two studies in China simulating rice yield for six to eight rice ecological

stations reported that the average RMSEs for rice yield were within 800 kg/

ha (Tao et al., 2008; Yao et al., 2007). The simulated rice yield was not

significantly different from the observed yield over more than 10 years of

field experiments in two locations in India (P > 0.01) (Lal et al., 1998).

Subash and Mohan (2012) showed that the CERES-Rice model predicted

the rice production trends in several production sites for 29 years, although

the model tended to overpredict the yield. By contrast, Xiong et al. (2008)

reported that the CERES models failed to reproduce the temporal rice yield

variability in China. Xiong et al. (2008b) also reported that the RMSEs for

rice yield simulations for more than 500 rice stations in China ranged from

1129 to 1672 kg/ha (normalized RMSE: 11.8 ∼ 25.6%) and that the model,

on average, overestimated rice yield by 3191 kg/ha at a regional level. Yun

(2003) showed that the correlation of determination between the simulated

and observed yields was 0.4, while it was over 0.9 at the regional level when

growing acreages were corrected.

Studies have tested grain yield under both water and nutrient stress con-

ditions. Experiments in Bangladesh with both nutrient (0 ∼ 135 kg N/ha)
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and water treatments (rain-fed vs. irrigated), Timsina et al. (1998) showed that

the overall simulated rice yield did not match well with the observations

(RMSD = 1279 kg/ha, r2 = 0.52). In contrast, Amiri et al. (2013) reported

that the average RMSD was 297 kg/ha under various amounts of irrigations

treatment and fertilization treatment (0 ∼ 75 kg/ha) in Iran. Using 80 treat-

ments consisting of various sowing dates, population densities, spacings, and

fertilization and irrigation treatments, Mall et al. (2002) reported an overall

RMSD of 698 kg/ha, but the model did not simulate grain yields accurately

when the yield was under 4 Mg/ha (Mall and Aggarwal, 2002). Under rain-

fed conditions in India, with six nitrogen application treatments (0 ∼ 120 kg/

ha) and wheat residue treatments (remains vs. removed), the simulated rice

yield had a mean bias errors of 131.5 and 64.0 kg/ha for transplanted and

direct-seeded rice, respectively (Sarkar and Kar, 2008).

The CERES models have also been tested under varied available water

conditions. Combining irrigation water treatment (625, 775, 925, 1075, and

1225 mm) and seedling density (1 ∼ 3 seedlings/hill) treatment in Pakistan,

the simulated grain yield was on average 11% off of the observation, with a

normalized RMSD of 1.4 ∼ 2.1% for each seedling density treatment

(Ahmad et al., 2012). Under rain-fed conditions with varying transplanting

dates frommid-Jun. to early-Aug. in Bangladesh, the average RMSE for rice

yield was 1270 kg/ha (Mahmood et al., 2003). Godwin et al. (1994) indi-

cated that the CERES models performed less accurately when rice was

under stressed conditions, with satisfactory yield prediction for continuously

flooded and fertilized rice fields, heavy underestimation for continuously

flooded and unfertilized rice fields, and heavy overestimation for sprinkled

and fertilized rice fields.

With contrasting fertilizer input treatments, theCERES-ricemodel showed

the ability to accurately simulate the rice yield as well. Simulating grain yield

under a 0 ∼ 150 kg N/ha treatment in India for amedium-duration rice variety

showed the worst prediction among 150 kg/ha nitrogen addition treatments,

with over 50% error, but the simulation error for the long-durationvarietywas 4

and 14% for the 150 kg N/ha and 10 kg N/ha treatments, respectively (Swain

and Yadav, 2009). With the same fertilization treatment in three locations in

Thailand, the biases were 277 ∼ 407 kg/ha, while with a 75 kg N/ha addition,

the biases were only 77 ∼ 142 kg/ha (Cheyglinted et al., 2001). In addition,

Amien et al. (1999) showed that themodel slightly underestimated rice yield and

that the simulated yieldwas highly correlatedwith themeasured yield (r2 of 0.87)
in three regions of Indonesia using various nitrogen fertilizer sources, rates and

application methods.
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Others tested the CERES-Rice model using sowing date, tillage

method, residue removal, elevated CO2, and elevated temperature treat-

ments. Babel et al. (2011) reported that the average percentage error for

simulating both early- and late-sown rice in a field in Thailand was 3.13%.

With 18 planting dates ranging from Jan. to Dec. and Jul. to Aug., in India,

the yield simulations had indices of agreement ranging from 0 to 0.98 (the

overall agreement index was 0.57) (Sudharsan et al., 2013). In Madagascar,

the model was tested across two tillage treatments, conventional tillage with

residue removal versus direct seeding with mulch-based tillage, and the

average RMSD for the harvest weight simulation was 499 kg/ha

(Gerardeaux et al., 2011). Sarkar and Kar (2006) reported that when simu-

lating rice yield in rice-wheat rotation systems involving both residue

removal and residue remaining, the average RMSDs were 267.34 and

445.21 kg/ha for transplanted rice and direct-seeded rice, respectively.

Using an elevated CO2 treatment in India, the grain yield simulation errors

were within 10% (Satapathy et al., 2014). Across temperature treatments

(0 ∼ 2 °C elevated) combined with CO2 concentration treatments

(380 ppm and 550 ppm), the simulated yield was up to 17.6% underesti-

mated and 9.1% overestimated (Kim et al., 2013).

3.3 Kernel Weight

3.3.1 CERES-Maize
Kernel weight has been tested on the basis of individual kernels, per square

meter, and per year given irrigation, fertilization, and cover-crop treatments

(Table 7). Six studies tested maize kernel weight under an irrigation treat-

ment. Under water-stressed conditions, the kernel weight was underesti-

mated by about 30%, while under irrigation treatments, the errors were

about 3% (Mubeen et al., 2013). Across dry- and irrigated land in Kansas,

US, the average RMSE for maize kernel weight was 0.061 g

(Retta et al., 1991). Similarly, across well-irrigated and severe water stress

treatments in Australia, the averageRMSEwas 0.13 g (Carberry et al., 1989).

In Italy, the kernel weight tended to be underestimated, and the percentage

errors were larger with severe water stress (up to 21%) than with moderate or

zero water stress (within 15%) (Ben Nouna et al., 2000; Mastrorilli et al.,

2003). A study in Brazil indicated that the prediction of kernel weight was

worse under rain-fed conditions (normalized RMSE of 6.07%) than under

irrigated conditions (normalized RMSE of 4.8%) (Soler et al., 2007). When

simulating grain weight in rain-fed fields in Nigeria, the errors were less than
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Table 7 Summary of the CERES-Maize model performances for kernel weighta and kernel numbera variable simulations.

Treatment category Variables Countries Performance References

Rain-fed/nonirrigated

and well fertilized

Kernel number Brazil RMSE: 102 ∼ 257 Soler et al. (2007)

Normalized RMSE:

4.56 ∼ 12.87%

Nigeria Difference: 0 ∼ 174 Jagtap et al. (1993)

Spain RMSE: 1700 López-Cedrón et al. (2008)

Kernel weight Croatia Underestimated by 3% Vucetic (2011)

Pakistan, Italy,

China

Underestimated by

11 ∼ 30%

Mubeen et al. (2013);

Mastrorilli et al. (2003); Ben

Nouna et al. (2000); Guo

et al. (2010)

Croatia Overestimated by 39% Vucetic (2011)

Brazil Normalized RMSE:

<6.07%

Soler et al. (2007)

Nigeria Difference: <0.007 g

Percentage error:<3%

Jagtap et al. (1993)

Irrigated with a gradient

of water/different

scheduling time and

well fertilized

Kernel number Italy Underestimated by

1.7 ∼ 21%

Ben Nouna et al. (2000);

Mastrorilli et al. (2003)

Australia RMSE: 1065 Carberry et al. (1989)

Kernel weight United States RMSE: 0.061 g Retta et al. (1991)

Australia RMSE: 0.13 g Carberry et al. (1989)

Italy Percentage error: <15% Mastrorilli et al. (2003); Ben

Nouna et al. (2000)

(Continued )
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Table 7 Summary of the CERES-Maize model performances for kernel weighta and kernel numbera variable simulations.—cont'd.

Treatment category Variables Countries Performance References

Well irrigated and well

fertilized (Weiss and

Moreno-Sotomayer,

2006)

Kernel number Brazil RMSE: 102

Normalized RMSE:

4.56%

Soler et al. (2007)

Italy Underestimated by: 8% Ben Nouna et al. (2000);

Mastrorilli et al. (2003)

Kernel weight Pakistan, Italy,

Brazil

Percentage error:

3 ∼ 15%

Mubeen et al. (2013);

Mastrorilli et al. (2003); Ben

Nouna et al. (2000); Soler

et al. (2007)

Kernel weight Argentina Overestimated it at its

low weight range

values, underestimated

it at its high range

values

Otegui et al. (1996)

Cover crops Kernel number Spain RMSE: 188 ∼ 584 Salmerón et al. (2014)

Kernel weight RMSE: 0.012 ∼ 0.03 g

aHere only showed individual kernel weight and kernel number per square meter validation results; other relevant validated variables included kernel weight per square

meter, kernel weight per year, kernel number per year and kernel number per plant and the results were summarized in the text.
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0.007 g (within 3% error) (Jagtap et al., 1993). Under rain-fed conditions in

Croatia, the model overestimated kernel weight by 39% (Vucetic, 2011).

With cover-crop treatments in Spain, the kernel weight was well-simulated,

with low RMSEs between 0.012 and 0.03 g (Salmerón et al., 2014). Grain

weight per square meter was tested for dry- and irrigated land in Kansas, and

the average RMSE was 152.2 g (Retta et al., 1991). The grain weight per

year was tested for agricultural experiment stations in the Southeastern US,

and the average RMSE was 59 g (Tsvetsinskaya et al., 2003). In addition,

Otegui et al. (1996) indicated that when simulating kernel weight given

sowing dates treatments for four maize hybrids in Argentina, the model

overestimated the grain weight when it was at the low-range value but

underestimated the grain weight when it was at the high-range value.

3.3.2 CERES-Wheat
Ten studies tested the weight of wheat kernels under a range of treatments

(Table 8). The individual-grain-weight simulation had average RMSEs

within 0.0076 g under water stress (rain-fed vs. irrigated treatments) com-

bined with nutrient stress conditions (0 ∼ 250 kg N/ha) in Spain

(Abeledo et al., 2008) and fertilized cropping systems in Argentina

(Monzon et al., 2007). Under well-irrigated and fertilized condition in

India, the simulated grain weight for 5 years was 88 ∼ 113% of the observed

grain weight (Hundal and PrabhjyotKaur, 1997). In China, across nine

irrigation treatments, the relative absolute errors ranged from 0 to 8.29%,

with an average relative absolute error of 5% (He et al., 2013). Across rain-fed

and irrigation treatments in Argentina, the grain weight simulation was in

good agreement with the observation, with a root mean square of 0.0022 g

(Savin et al., 1994). Two studies in Nebraska, US, reported that the normal-

ized RMSEs for kernel weight simulations were about 0.003 g given plant-

ing population combined with sowing date treatments and about 0.0024 g

given varied sowing date conditions (Moreno-Sotomayor and Weiss, 2004;

Weiss and Moreno-Sotomayer, 2006). With five wheat production stations

in the Czech Republic, the RMSE for a thousand-grain weight simulation

was 7.5 g, which was within 20% error (Trnka et al., 2004). However, the

thousand-grain weight was poorly simulated under combinations of CO2

concentration and water availability treatments, with a model efficiency

index of 0.44 (Biernath et al., 2011). Another study showed that the model

underestimated the thousand-grain weight across experiments in humid and

dry weather conditions in Algeria, with an average RMSE of 4.29 g for the

model evaluation year (Rezzoug et al., 2008).
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Table 8 Summary of the CERES-Wheat model performances for kernel weighta and kernel numbera variable simulations.

Treatment category Variables Countries Performance References

Irrigated with a gradient of

water/different scheduling

time and well fertilized

Kernel weight China Percentage error: <9% He et al. (2013)

Argentina Root mean square:

0.0022 g

Savin et al. (1994)

Kernel number Germany Model efficiency

index: 0.52

Biernath et al. (2011),b

Well irrigated, fertilized with

a gradient of fertilizer(s) and

combined with different

sowing dates

Kernel number Germany RMSE: 3677, R2: 0.07 Ratjen et al. (2012)

Netherlands RSME: 1808, R2: 0.77

Well irrigated and well

fertilized

Kernel weight Argentina RMSE: 0.0051 g

R2: 0.32

Monzon et al. (2007)

India Percentage error: ≤13% Hundal and

PrabhjyotKaur (1997)

Kernel number Czech Republic RMSE: 2845

Percentage error: <20%

Trnka et al. (2004)

Argentina RMSE: 3018 Monzon et al. (2007)

Irrigated with a gradient of

water and fertilized with a

gradient of fertilizer(s) only

Kernel weight Spain RMSE: 0.0076 g

Mean percentage

error: 22%

Abeledo et al. (2008)

Kernel number Spain RMSE: 4340

Mean percentage

error: 24%

Abeledo et al. (2008)
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Sowing dates Kernel weight United States RMSE: 0.0023 ∼ 0.0029 g

Normalized RMSE:

9 ∼ 12%

Weiss and Moreno-

Sotomayer (2006),c;

Moreno-Sotomayer

and Weiss (2004)

Kernel number United States RMSE: 3998 ∼ 4555

Normalized RMSE:

35 ∼ 42%

Moreno-Sotomayer and

Weiss (2004)

aHere only showed individual wheat kernel weight and kernel number per squaremeter validation results; other relevant validated variables included thousandwheat kernel

weight, and thousand kernel number, and the validation results were summarized in the text.
bTreatment included two irrigation regimes (full irrigation vs. limit irrigation) combined with elevated CO2 versus ambient CO2 concentration.
cTreatments include Planting density combined with sowing dates.
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3.3.3 CERES-Rice
One study in Indonesia showed that the CERES-Rice model underesti-

mated the kernel weight by almost 1 mg (Amien et al., 1999).

3.4 Kernel Number

3.4.1 CERES-Maize
Maize kernel number has been tested in the form of grain number per year,

grain number per square meter, and grain number per plant. It has

been validated with irrigation and fertilization treatments (Table 7). Soler

et al. (2007) reported that the grain number simulation for both irrigated and

rain-fed fields in Brazil were reasonably good, with average RMSEs of 102

and 257, respectively, and normalized RMSEs of 4.56 and 12.87%, respec-

tively. Jagtap et al. (1993) showed that the CERES model could underesti-

mate the number of grains per year by 21 or overestimate it by 68, depending

on the year. With severe water stress, the simulated grain number per year was

up to 21% less than the observations for 1 year but only about 1.7% less for

another year (Ben Nouna et al., 2000; Mastrorilli et al., 2003). Across two

water availability extremes, Retta et al. (1991) reported that the grain number

per year simulation across dry- and irrigated-land treatments had an average

RMSE of 94, and Carberry et al. (1989) calculated the RMSE to be 127.8

across well-watered and severe water stress treatments. In Argentina, for four

sowing dates between late-Aug. and late-Nov., the CERES model over-

estimated the low-range grain numbers and underestimated the high-range

grain numbers (Otegui et al., 1996). Six studies tested the grain number per

square meter. Three of them suggested that in general, grain number on a

square meter basis did not match very well with the observations under

limited-water conditions, with a percentage difference up to 21% (Ben

Nouna et al., 2000; Mastrorilli et al., 2003) and an RMSE over 1000

(Carberry et al., 1989). Another study tested grain number per square meter

under rain-fed conditions in Nigeria. The grain number per square meter

seemed to be reasonably well-simulated, with errors as low as 0 and as high as

174, depending on the simulation year (Jagtap et al., 1993). In Spain, kernel

number per square meter simulations with cover crop treatments had a low

error (RMSE < 590) as well (Salmerón et al., 2014). By contrast, the RMSE

when simulating grain number per square meter under rain-fed conditions in

Spain was over 1700 (López-Cedrón et al., 2008). In terms of grain number

per plant tests, Lizaso et al. (2001) used 134 treatments over 4 years in Iowa

and reported that the CERES consistently overestimated kernel number
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when it was under 400 kernels per plant but underestimated kernel number

per plant by 67 overall.

3.4.2 CERES-Wheat
Seven studies validated wheat kernel number under a range of treatments

(Table 8). The reported average RMSE for grains per square meter ranged from

3998 to 4555 across irrigated and rain-fed fields in Spain (Abeledo et al., 2008)

and for 31 sowing experiments in the United States (Moreno-Sotomayor and

Weiss, 2004). By contrast, theRMSE ranged from 2845 to 3018 under fertilized

condition in Argentina (Monzon et al., 2007) and the Czech Republic

(Trnka et al., 2004). Under both water availability and CO2 concentration

treatments, the average model efficiency index for simulating grain number

on a square-meter basis was 0.52 (Biernath et al., 2011). Ratjen et al. (2012)

used two datasets from Germany with fertilization (0 ∼ 320 kg N/ha) and

sowing date treatments (Sep.–Oct.) and from theNetherlands under fertilization

and sowing date treatments (varied sowing dates betweenOct. 19 and 25) to test

grain number per square meter and showed that the RMSEs were 3677 and

1808 grains/m2, respectively. Savin et al. (1994) compared the standard error of

the mean for the observed thousand-grain number to the root mean square of

the simulated thousand-grain number across well-irrigated and early drought

treatments, and the statistics were 1.34 and 0.56, respectively.

3.4.3 CERES-Rice
One simulation study used 32 experiments conducted under various loca-

tions, weather, and management conditions in India for over 13 years and

showed that grain number per square meter was well-simulated when the

number was over the range of 15,000–32,000 grains/m2 (Mall and

Aggarwal, 2002).

3.5 Aboveground Biomass and its Components
(Excluding Grain Yield)

3.5.1 CERES-Maize
A total of 31 studies tested the biomass-related variables of the CERES-maize

model, including aboveground biomass, LAI, stover biomass, biological yield,

and shoot, leaf, stem, and year biomass (Tables 9 and 10). Under themaximum

allowable depletion of available soil water in India, the average RMSE for

aboveground biomass simulation was 202 kg/ha (Panda et al., 2004). In

Turkey, with 50–100% sufficient water treatments, the model underestimated

aboveground biomass by 2 ∼ 8.6% (Gercek and Okant, 2010). The RMSEs
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Table 9 Summary of the CERES-Maize model performances for aboveground biomass variable simulation.

Treatment category Countries Performance References

Rain-fed/nonirrigated and

well fertilized

Spain RMSE: >5000 kg/ha López-Cedrón et al. (2008)

Nigeria RMSE: <400 kg/ha Jagtap et al. (1993)

Brazil Normalized RMSE: 10 ∼ 25% Soler et al. (2007)

China Percentage error: 17% Guo et al. (2010)

Croatia Percentage error: 3% Vucetic (2011)

United States RMSE: 1701 kg/ha Retta et al. (1991)

Irrigated with a gradient of

water/different scheduling

time and well fertilized

Turkey Underestimated by 2 ∼ 8.6% Gercek and Okant (2010)

Spain Overestimated by 7% Dechmi et al. (2010)

India, Pakistan RMSE: 202 ∼ 1116kg/ha Panda et al. (2004);

Mubeen et al. (2013)

United States, Spain RMSE: 1600 ∼ 1708 kg/ha Saseendran et al. (2008),

Dechmi et al. (2010)

Australia RMSE: over 5000 kg/ha Carberry et al. (1989)

United States Normalized RMSE: 22 ∼ 26% Anothai et al. (2013)

Italy Percentage error: 14 ∼ 30% Ben Nouna et al. (2000),

Mastrorilli et al. (2003)

Varied nitrogen levels,

irrigated

China Normalized RMSE: 15 ∼ 23% Liu et al. (2012)

Well irrigated and well

fertilized

Spain RMSE: 2202 kg/ha López-Cedrón et al. (2005)

Portugal RMSE: 1494.17 kg/ha Braga et al. (2008)

United States, Brazil,

Canada

Normalized RMSE: 23 ∼ 33% Xevi et al. (1996); Soler

et al. (2007); Liu et al.

(2014)

Italy Percentage error: 5.55% Ben Nouna et al. (2000);

Mastrorilli et al. (2003)
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Not fertilized Canada Normalized RMSE: 41% Liu et al. (2014)

Irrigated and fertilized at

varied rates

United States Percentage error: <12% He et al. (2011)

Iran Normalized RMSE: 6.6% Moradi et al. (2013)

United States Percentage error: ≤16% Persson et al. (2009)

Other treatmentsa United States Percentage error: ≤17% Saseendran et al. (2005)

Cover crops Spain RMSE: 530 ∼ 3990 kg/ha Salmerón et al. (2014)

aOther treatments included sowing dates, planting density, and spacing.
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Table 10 Summary of the CERES-Maize model performances for biomass-related variable (excluding aboveground biomass) simulations.

Treatment category Variables Countries Performance References

Rain-fed/nonirrigated

and well fertilized

Stover biomass Nigeria Differences:3 ∼ 701 kg/ha Jagtap et al. (1993)

Harvest index Spain Underestimated by 1.3 López-Cedrón et al. (2008)

Croatia Underestimated by 7% Vucetic (2011)

Irrigated with a gradient

of water/different

scheduling time and

well fertilized

Stover biomass Australia RMSD: 2421 kg/ha Carberry et al. (1989)

Harvest index Spain Underestimated by 13% Dechmi et al. (2010)

Fertilized with different

types of fertilizers

Shoot biomass Thailand Normalized RMSE: 16.8 ∼ 79.1% Pinitpaitoon et al. (2011)

Well irrigated and

fertilized

Biological yield Iran Normalized RMSE: 4.22% Moradi et al. (2014)

Irrigated with a gradient

of water and fertilized

with a gradient of

fertilizer

Leaf biomass United States Agreement index: 0.65 ∼ 0.85 Lizaso et al. (2011)

Stem biomass Agreement index: 0.85 ∼ 0.9

Shoot biomass Agreement index: >0.9

Year biomass Agreement index: >0.93

Planting densities Biological yield Iran Normalized RMSE: 6.95% Lashkari et al. (2011)
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ranged from 1494.2 to 2202 kg/ha across 23 ∼ 188 mm irrigation water

treatments in Colorado, US (Saseendran et al., 2008), under well-irrigated

and fertilized treatment in Spain (López-Cedrón et al., 2005) and under varied

sowing dates treatments in Portugal (Braga et al., 2008). In contrast, the

average RMSEs were over 5000 kg/ha across nonwater stress versus severe

water stress treatments in Australia (Carberry et al., 1989) and rain-fed fields in

Spain (López-Cedrón et al., 2008). When simulating biomass under seven

irrigation treatments with different irrigation amounts and timings, the per-

centage errors were 6%, with average RMSEs over 1700 kg/ha

(Mubeen et al., 2013). When simulating top biomass in seven maize produc-

tion stations under rain-fed conditions in China, the percentage errorwas 17%

(Guo et al., 2010). By comparison, for Croatia, the simulation error for rain-

fed maize aboveground biomass was 3% (Vucetic, 2011). Under sowing date

treatments (sown between late-Apr. and mid-Jun.), the percentage errors for

biomass simulation were not larger than 17% (Saseendran et al., 2005). The

simulated dry matter yield was within 12% absolute relative error given

fertilization rates of 247 and 309 kg/ha and two irrigation (full irrigation

and overirrigation) treatments, but the error was 29% given overirrigation

with 185 kg N/ha addition treatment (He et al., 2011). Under low- and high-

irrigation treatments in Spain, the total dry matter was overestimated by 7%,

with an RMSE of 1650 kg/ha (Dechmi et al., 2010). Across 40 ∼ 100%-full

irrigation treatments in Colorado, US, the total biomass simulation had a

normalized RMSE of at least 22.7% (Anothai et al., 2013). Under

141 ∼ 219 kg N/ha fertilization rates with irrigation (irrigation and nonirri-

gation) and planting date (three dates across Mar.) treatments, the simulation

errors were from 0.091 to 16.2% (Persson et al., 2009). Across three irrigation

treatments (450 ∼ 650 mm irrigation water) combined with four fertilization

treatments (0 ∼ 450 kg/ha) in Iran, the biomass yield simulation had a nor-

malized RMSE of 6.6% and a model efficiency of 0.89 (Moradi et al., 2013).

By comparison, under irrigated conditions in Nebraska, US, the normalized

RMSE for simulating aboveground dry matter was 31.9% (Xevi et al., 1996).

Others compared aboveground biomass simulation accuracy among treat-

ments. The simulation research in Italy showed that with moderate and severe

water stress, the CERES model consistently underestimated aboveground

biomass by over 14% and over 24%, respectively, whereas it only underesti-

mated the biomass by 5.55% without water stress (Ben Nouna et al., 2000;

Mastrorilli et al., 2003). In Brazil, the aboveground biomass simulation for

irrigated fields had normalized RMSEs between 23.6 and 32.9%, while that

for rain-fed fields had normalized RMSEs between 10.1 and 24.7%
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(Soler et al., 2007). A 2-year experiment in Kansas showed that the CERES

model consistently underestimated aboveground vegetative biomass for irri-

gated fields but overestimated the biomass for dry-land fields. The average

RMSE for the two fields was 1701 kg/ha, with a mean bias of 31 kg/ha

(Retta et al., 1991). Under rain-fed conditions in Nigeria, the model over-

estimated the aboveground biomass by less than 400 kg/ha (Jagtap et al., 1993).

Liu et al. (2012) reported that the normalized RMSEs were 23.1 and 15.4%

when simulating maize aboveground biomass in the North China Plain given

nitrogen application rates of 0 ∼ 400 and 0 versus 180 kg N/ha, respectively.

Using fertilized and unfertilized treatments inCanada, the normalizedRMSEs

for maize aboveground biomass were 26.8 and 41.2%, respectively

(Liu et al., 2014). Given various winter cover-crop treatments, the above-

ground biomass simulation under no cover crops and underwinter cover crops

of oilseed rape and vetch was in agreement with the observations, with an

RMSE under 1600 kg/ha, but under winter rape and barley cover crop

treatments, the simulations did not agree with the observations, with an

RMSE over 2500 kg/ha (Salmerón et al., 2014).

Stover biomass, biological yield, shoot biomass, leaf biomass, stem bio-

mass, shoot biomass, and year biomass have been validated as well. Under

fully irrigated versus severe water stress treatments, the average RMSD

when simulating maize stover biomass at maturity was 2421 kg/ha

(Carberry et al., 1989). In rain-fed fields in Nigeria, the stover biomass

was underestimated by 701 kg/ha for 1 year but overestimated by 3 kg/ha

for another year (Jagtap et al., 1993).

In Iran, the normalized RMSE for biological yield was 6.95% under

planting density treatments (Lashkari et al., 2011) and 4.22% under fertilized

and irrigated treatments (Moradi et al., 2014). For shoot biomass, under

mineral fertilizer and compost fertilizer treatments in Thailand, the model

simulated maize shoot biomass relatively well for the second year but poorly

for third ∼ fifth years, with normalized RMSEs of 16.8% and 25.6 ∼ 79.1%,

respectively (Pinitpaitoon et al., 2011). Lizaso et al. (2011) tested leaf bio-

mass, stem biomass, shoot biomass, and year biomass in Florida under rain-

fed conditions with low nitrogen input (116 kg N/ha) and under irrigated

conditions with high nitrogen input (401 kg N/ha), 0 and 240 kg N/ha, as

well as with 56 and 224 kg N/ha application treatments in Iowa. The indices

of agreement for the leaf biomass simulation were mostly above 0.85, with

RMSEs from 584.8 to 1054.5 kg/ha, except for rain-fed fields with low

nitrogen input and 0 kg N/ha application treatments in Florida (index of

agreement below 0.65 andRMSEs of 1060.5 and 635.3 kg/ha, respectively).
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By contrast, for stem biomass simulations, under rain-fed conditions with

low nitrogen and 0 kg N/ha input treatments in Florida, the RMSEs were

under 215 kg/ha, with index of agreement above 0.9, while under other

treatments, the RMSEs were mostly above 1170 kg/ha, with agreement

indexes around 0.85. The RMSEs for shoot biomass simulations ranged

from 771.3 to 867.8 kg/ha for treatments in Florida and from 1647.7 to

2229.1 kg/ha in Iowa. The year biomass was simulated only for 0 kg N/ha

and 240 kg N/ha treatments in Florida and nitrogen application treatments

in Iowa. The indices of agreement were all above 0.93, with RMSEs of

396.5 ∼ 1155.4 kg/ha (Lizaso et al., 2011).

3.5.2 CERES-Wheat
The aboveground biomass prediction capability of the CERES-Wheat model

has been evaluated under several treatments, including water availability treat-

ments, fertilization treatments, sowing date treatments, CO2 concentration

treatments, and management intensity treatments (Table 11). Under rain-fed

conditions in India, the aboveground biomass simulation had an index of

agreement of 0.98 and an r2 of 0.95 (Vashisht et al., 2013). The average

RMSEs were 333 and 900 kg/ha across irrigation treatments at 30 ∼ 75% of

the maximum allowable soil water depletion in India (Panda et al., 2003) and

across irrigation with various amounts water and at various developmental

stages in New Zealand (Jamieson et al., 1998). On average, the CERES-

Wheat model underestimated the aboveground biomass by 644 kg/ha for

seven production stations in China (Guo et al., 2010). Given different irriga-

tion applications (from no irrigation to full irrigation) combinedwith different

nitrogen fertilizer application rates (from zero to a high rate), the reported

RMSEs ranged from 1200 to 2360 kg/ha (Abeledo et al., 2008; Arora et al.,

2007; Singh et al., 2008). Under rain-fed and fertilization treatments

(0 ∼ 112 kg N/ha) in the United States, the average RMSE was 1247 kg/

ha. Under well-fertilized conditions with conventional and no-till manage-

ment, the RMSEs were 1999 and 2282 kg/ha, respectively (Saseendran et al.,

2004; Soldevilla-Martinez et al., 2013). The average normalized RMSE was

9.5% across two nitrogen application treatments (110.5 and 241 kg N/ha) in

the United States (Thorp et al., 2010b), and it was within 19% when

simulating aboveground biomass under a CO2 concentration treatment com-

bined with irrigation treatment (Tubiello et al., 1999b) and 23.1% across

three rotation experiments in India, including a wheat-rice field under nitro-

gen stress treatment (0 ∼ 160 kg N/ha) and another wheat-rice field, a

wheat-maize, and wheat-soybean fields with sufficient fertilizer input
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Table 11 Summary of the CERES-Wheat model performances for aboveground biomass variable simulations.

Treatment category Countries Performance References

Rain-fed/nonirrigated and

well fertilized

India R2: 0.95 Vashisht et al. (2013)

Irrigated with a gradient of

water/different scheduling

time and well fertilized

India RMSE: 333 kg/ha Panda et al. (2003)

New Zealand RMSE: 900 kg/ha Jamieson et al. (1998)

Well irrigated and fertilized

with a gradient of fertilizer(s)

United States RMSE: 1247 kg/ha Saseendran et al. (2004)

Normalized RMSE: 9.5% Thorp et al. (2010b)

India Percentage error: 23% Timsina et al. (2008)

Well irrigated and not

fertilized

Germany R: 0.8 Bacsi and Zemankovics (1995)

Well irrigated and well

fertilizeda
China Underestimated by 644 kg/ha

Percentage error: 11.4%

Guo et al. (2010)

Irrigated with a gradient of

water and fertilized with a

gradient of fertilizer(s)

India RMSE: 1200 ∼ 1940 kg/ha

Normalized RMSE: 14%

Singh et al. (2008); Arora et al.

(2007)

Spain RMSE: 2360 kg/ha

Percentage error: 17%

Abeledo et al. (2008)

Conventional versus no tillage United States 1999 ∼ 2282 kg/ha Soldevilla-

Martinez et al. (2013)

CO2 concentration with

irrigation regimes

United States Percentage error: 5 ∼ 19% Tubiello et al. (1999b)

Germany Normalized RMSE: 27% Biernath et al. (2011)

CO2 concentration United States Overestimated by 20 kg/ha Tubiello et al. (1999a)
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Sowing date India Percentage error: <20% (for

over 80% of the simulations)

Hundal and PrabhjyotKaur

(1997)

Germany Percentage error: <8%,

R2 > 0.95

Bacsi and Zemankovics (1995)

Planting density combined

irrigation treatments;

phosphorous input with

seeding rates

Iran Normalized RMSE: 4.8% Bannayan et al. (2014)

Wheat with different fallow

scheduling systems

Canada R: 0.85 Wang et al. (2010)

aLiteratures that did not include treatments were considered as “well irrigated and well fertilized”; for instance, data obtained from local reports.
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(Timsina et al., 2008). With continuous wheat and rotation wheat cropping

systems in Canada, the correlation coefficients between the simulated and the

observed biomass were above 0.8 (Wang et al., 2010). Hundal and

PrabhjyotKaur (1997) reported that theCERESmodel tended to overestimate

aboveground biomass for both early- and late-sowing date treatments, but over

80% of the simulated aboveground biomass was within 20% error. Across four

experiments with three sowing dates (DOY273, DOY284 andDOY289) and

an unfertilized treatment with a sowing date of DOY289, the CERES model

also overpredicted the total aboveground biomass at harvest, and the errors

weremostlywithin 8%, except for the fertilizedDOY289 treatment (Bacsi and

Zemankovics, 1995). Across treatments with different planting densities, irri-

gation inputs, phosphorous levels, and seeding rates in Iran, the normalized

RMSE for aboveground biomass was 4.8% (Bannayan et al., 2014). Under an

elevated CO2 concentration, the simulated aboveground biomass was over-

estimated by 20 kg/ha (Tubiello et al., 1999a). Across elevated and ambient

CO2 concentration treatments combined with full versus limited irrigation

treatments, the average normalized RMSE was 27% for total aboveground

biomass simulation (Biernath et al., 2011).

Other biomass-related variable validations, including vegetative biomass,

organ biomass, straw biomass, canopy biomass, total biomass, leaf biomass,

biological yield, harvest biomass residual, harvest biomass, and surface residue

biomass have been reported in the literature (Table 12). Priesack et al. (2006)

tested the CERES-Wheat model at an extensive managed plot to which a

mixture of inorganic and organic fertilizer was applied and on which a low

level of chemical plant protection was used. They reported that the simulated

vegetative aboveground and organ storage biomass were close to the observa-

tions. Straw biomass has been tested with various fertilization rates. Under

nutrient stress (different ratios of nitrogen, phosphorus, and potassium) com-

bined with water stress treatments, the wheat straw biomass simulation had

RMSEs of 227.9 and 318.6 kg/ha, depending on the year (Behera and Panda,

2009). Across two types of rotation cropping systems with nutrient stress, the

average normalizedRMSDwas 39.9% (Timsina et al., 2008). Under irrigated

and fertilized fields in Arizona, US, the canopy biomass simulation had a

normalizedRMSE of 18.6% (Thorp et al., 2012). For six experiments involv-

ing nitrogen application (about 80 and about 215 kg/ha) and planting density

treatments in Arizona, the errors varied greatly, by up to 2000 kg/ha

(Thorp et al., 2010a). Across two nitrogen fertilizer treatments in Arizona,

the normalized RMSE for leaf mass at the end of the leaf development

simulation was 12% (Thorp et al., 2010b). Bakhsh et al. (2013) reported that
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Table 12 Summary of the CERES-Wheat model performances for biomass-related variable (excluding aboveground biomass) simulations.

Treatment category Variables Countries Performance References

Well irrigated and fertilized

with a gradient of fertilizer

(s)/different types of

fertilizers

Straw biomass India Normalized RMSE: 40% Timsina et al. (2008)

Harvest index India RMSE: 0.135

Normalized RMSE: 35.1%

Timsina et al. (2008)

Leaf biomass United

States

Normalized RMSE: 12% Thorp et al. (2010)b

Biological

biomass

Pakistan RMSE: <770 kg/ha Bakhsh et al. (2013)

Well irrigated and well

fertilizeda
Canopy biomass United

States

Normalized RMSE: 18.6% Thorp et al. (2012)

Irrigated with a gradient of

water and fertilized with a

gradient of fertilizer(s)

Total biomass Spain RMSE: 2360 kg/ha

Mean percentage error: 17%

Abeledo et al. (2008)

Straw biomass India RMSE: 227 ∼ 318 kg/ha; R2:

0.96 ∼ 0.97

Behera and Panda (2009)

Harvest index Spain RMSE: 0.16; percentage error: 24% Abeledo et al. (2008)

CO2 concentration Harvest index United

States

Percentage error: 6% Tubiello et al. (1999a)

Planting density combined

with high versus low

nitrogen

Canopy biomass United

States

Difference: <2000 kg/ha Thorp et al. (2010a)

Rotation systems Harvest biomass Germany RMSE: 2100 kg/ha Langensiepen et al. (2008)

Harvest biomass

residuals

RMSE: 2200 ∼ 2400 kg/ha

(Continued )

A
C
om

prehensive
Review

ofthe
C
ERES-W

heat,-M
aize

and
-Rice

M
odels’Perform

ances
83



Table 12 Summary of the CERES-Wheat model performances for biomass-related variable (excluding aboveground biomass) simulations.—
cont'd.

Treatment category Variables Countries Performance References

Management insensitivity Vegetative

biomass

and organ

storage

biomass

Germany The simulations were close to the

observations

Priesack et al. (2006)

Wheat with different fallow

scheduling systems

Surface residue

biomass

Canada Error: 1800 kg/ha

underestimation ∼ 2400 kg/ha

overestimation

Wang et al. (2010)

aLiteratures that did not include treatments were considered as “well irrigated and well fertilized”; for instance, data obtained from local reports.
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the RMSEs for biological yield simulations of 11 fertilization treatments with

different amounts and types of fertilizers in Pakistan were within 770 kg/ha.

Predictions for harvest biomass residual and harvest biomass were validated

using 10-year data from awheat-barley-canola rotation field in Germany. The

RMSEs for harvest biomass residual ranged between 2200 kg/ha and

2400 kg/ha, depending on the genotype calibration processes, while the

RMSEs for harvest biomass were about 2100 kg/ha in spite of the different

calibration processes (Langensiepen et al., 2008). In continuous and rotation

wheat systems in Canada, the surface residue biomass simulation had errors

ranging from 1800 kg/ha underestimation to 2400 kg/ha overestimation

(Wang et al., 2010).

3.5.3 CERES-Rice
Five studies validated aboveground biomass and the top weight of the CERES-

Rice model (Table 13). Under both irrigation treatments (five irrigation levels

ranging from 625 to 1225 mm) and seedling density treatments (3 density levels

of 1 ∼ 3 seedling/hill), the average RMSEwas 385 kg/ha (Ahmad et al., 2012).

Two studies in Thailand validated aboveground biomass/top weight under

nitrogen application treatment. The authors reported that for each nitrogen

application treatment (0 ∼ 150 kg/ha), the absolute percentage errors were

within 25% and the simulations were more accurate for 50 ∼ 100 kg N/ha

treatments (errorswerewithin 10%) (Cheyglinted et al., 2001). Also, the average

RMSE for top weight simulation under 0 ∼ 188 kg N/ha application treat-

ments was 1103 kg/ha, with agreement index of 0.98 (Phakamas et al., 2013).

Assembling 32 experiments with 80 treatments, including planting dates, plant-

ing populations, spacings, nitrogen application rates, and irrigation rates, Mall

and Aggarwal (2002) found that overall, the CERES model slightly under-

estimated the aboveground biomass, especially in the early crop growing stage

(Mall and Aggarwal, 2002).

Additionally, by-product biomass prediction with the CERES-rice

model was tested with late-seeded rice in Thailand, with a simulation error

of 3.13% (Babel et al., 2011). Shoot biomass was validated in an open-field

and elevated-CO2 environment, and the normalized RMSEs were between

8 and 19% (Satapathy et al., 2014).

3.6 Harvest Index

3.6.1 CERES-Maize
For fertilized and rain-fed fields in Spain and Croatia, the harvest index was

underestimated by 1.3, with anRMSE of 0.155 (López-Cedrón et al., 2008),
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Table 13 Summary of the CERES-Rice model performances for biomass-related variable simulations.

Treatment category Variables Countries Performance References

Well irrigated and fertilized

with a gradient of fertilizer(s)

only

Aboveground biomass Thailand Percentage error: <25% Cheyglinted et al. (2001)

Top weight Thailand RMSE: 1103 kg/ha

R2: 0.98

Phakamas et al. (2013)

Fertilized, irrigated with varied

amount of water and planted

with varied densities

Aboveground biomass India RMSE: 137 ∼ 174 kg/ha Ahmad et al. (2012)

Top weight India RMSE: 385 kg/ha Ahmad et al. (2012)

Over 80 treatmentsa Aboveground biomass India Close to the observations

except for early growth stage

(up to panicle initiation)

Mall and Aggarwal

(2002)

Late-seeded rice Byproduct biomass Thailand Error: 3.13% Babel et al. (2011)

Harvest index Error: 5%

Open filed and elevated CO2 Shoot biomass India Normalized RMSE: 8 ∼ 19% Satapathy et al. (2014)

aTreatments included varied seeding and transplanting dates, planting densities, spacing, nitrogen inputs, and irrigations.
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and by 7% (Vucetic, 2011), respectively. Across irrigation treatments of

421 ∼ 609 mm in Spain, the harvest index was underestimated by 13%, with

an RMSE of 0.08 (Dechmi et al., 2010) (Table 10).

3.6.2 CERES-Wheat
Three studies tested the harvest index (Table 11). Across all irrigated versus

rain-fed and fertilized versus nonfertilized treatments, the overall RMSE

was 0.16, and the mean percent error was 34% (Abeledo et al., 2008).

Under various rotation cropping systems and different types of soils, with

one of the cropping systems using an unfertilized treatment, the HI sim-

ulation had an absolute RMSE of 0.135 and a normalized RMSE of 35.1%

(Timsina et al., 2008). In contrast, the error was 6% in an elevated CO2

environment (Tubiello et al., 1999a).

3.6.3 CERES-Rice
The simulated harvest index was only about 5% off of the observation for a

late-sown rice field in Thailand (Babel et al., 2011).

3.7 Leaf-Related Variables: Leaf Number,
Leaf Senescence, and LAI

3.7.1 CERES-Maize
The leaf number and LAI prediction capabilities of the CERES-Maize

model have been validated under irrigation, fertilization, sowing date, plant-

ing density, and spacing treatments in various countries (Tables 14 and 15).

Carberry et al. (1989) tested leaf number and leaf senescence under irrigated

versus severe water stress treatments in Australia. The authors found that the

overall RMSE for leaf number simulation was 2.49 and that the model did

not simulate leaf area senescence accurately during the growing season

(Carberry et al., 1989). Gungula et al. (2003) simulated leaf number at

anthesis date given 0 ∼ 120 kg N/ha treatments and indicated that the sim-

ulated leaf numbers were close to the observations given 60 ∼ 120 kg N/ha

application treatments. Braga et al. (2008) reported that the RMSE for total

leaf number simulation was 0.87.

Twenty-three papers have validated the LAI of the CERES-Maize model

(Table 13). Under nonirrigated treatment, the simulated LAIwas close to the

observed LAI during the growing season (Sandor and Fodor, 2012). With

various amounts of irrigation water and various irrigation-timing treat-

ments, the model simulated LAI reasonably well throughout the growing

season, with an agreement index over 0.8, and the simulated maximum LAIs
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Table 14 Summary of the CERES-Maize model performances for LAI variable simulations.

Treatment category Countries Performance References

Rain-fed/nonirrigated and well

fertilized

Brazil Percentage error:10 ∼ 24% Soler et al. (2007)

Nigeria, India,

Croatia

Percentage error: ≤6% Jagtap et al. (1993); Panda et al.

(2004); Vucetic (2011)

Hungary Close to the observations Sandor and Fodor (2012)

China Error: 0.5 ∼ 0.7 Guo et al. (2010)

Irrigated with a gradient of water/

different scheduling time and well

fertilized

Italy Percentage error: 26 ∼ 46% Ben Nouna et al. (2000);

Mastrorilli et al. (2003)

Pakistan Percentage error: 5.9 ∼ 23% Mubeen et al. (2013)

United States,

India

Percentage error: <5% DeJonge et al. (2011); Panda et al.

(2004)

India RMSE: <0.2 Panda et al. (2004)

Pakistan, United

States

RMSE: 0.68 ∼ 0.88 Mubeen et al. (2013); DeJonge

et al. (2011)

Australia, United

States

RMSE: 0.9 ∼ 1.14 Carberry et al. (1989); Retta et al.

(1991)

Spain Closed to the observed in the

early growing stages but not

late growing stages

Dechmi et al. (2010)

Well irrigated and well fertilized United States RMSE: 0.307 DeJonge et al. (2011)

Italy Percentage error: 0.97% Ben Nouna et al. (2000);

Mastrorilli et al. (2003)

Brazil, China Percentage error: 10% ∼ 24% Soler et al. (2007); Guo et al.

(2010)

United States Normalized RMSE: 35.7% Xevi et al. (1996)

Spain RMSE: 1.2 ∼ 2 López-Cedrón et al. (2005)

Canada Normalized RMSE:14 ∼ 50% Liu et al. (2014)
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Not fertilized Canada Normalized RMSE: 65 ∼ 98% Liu et al. (2014)

Irrigated with a gradient of water

and fertilized with a gradient

of fertilizer(s)

Iran Normalized RMSE: 5.22% Moradi et al. (2013)

Other treatmentsa United States Poorly simulated Lizaso et al. (2001); Lizaso et al.

(2003b)

United States RMSE: 0.33 ∼ 1.47 Saseendran et al. (2005); Lizaso

et al. (2011); Lizaso et al.

(2003a)

Iran RMSE: 12.79

R2: 0.94

Lashkari et al. (2011)

aOther treatments included sowing dates, planting density, and spacing.
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Table 15 Summary of the CERES-Maize model performances for leaf number variable simulations.

Treatment category Variables
Validation
Nations Performance References

Irrigated with a gradient of water/different

scheduling time and well fertilized

Leaf number Australia RMSE: 2.49 Carberry et al. (1989)

Well irrigated and fertilized with a gradient of

fertilizer(s)

Leaf number

at anthesis

Nigeria Difference: under-

predicted by 0 ∼ 5

Percentage error:

0 ∼ 17%

Gungula et al. (2003)

Sowing dates Total leaf

number

Portugal RMSE: 0.87 Braga et al. (2008)
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were within 23% error (Mubeen et al., 2013). Similarly, for both full and

limited irrigation treatments, DeJonge et al. (2011) reported that the LAIs

were overestimated over the growing season but were underestimated during

the reproductive stage. The authors also compared the model accuracy for

final LAI simulation between treatments and showed that the model simu-

lated the LAI better for full irrigation treatments (RMSE = 0.307) than

limited irrigation treatments (RMSE = 0.841) (DeJonge et al., 2011). Up

to 26.96 and 46.15% underestimation of maximum LAI were found under

moderate and severe water stress, respectively, but only a 0.97% overestima-

tion was found under full irrigation condition (Ben Nouna et al., 2000;

Mastrorilli et al., 2003). By comparison, when simulating LAI in rain-fed

and irrigated fields in Brazil with four different maize cultivars, the normal-

ized RMSEs were 10.4 ∼ 24.2% and 10.9 ∼ 24.4%, respectively

(Soler et al., 2007). Others reported that the average difference between

simulated and observed LAI was no greater than 0.09 under rain-fed and

fertilized condition (Jagtap et al., 1993) and various levels of water availability

(Panda et al., 2004). In contrast, the difference between the simulations and

the observations was about 0.2 for a rain-fed, fertilized treatment in Nigeria

(Jagtap et al., 1993) and an irrigated treatment in the United States

(Xevi et al., 1996). Across rain-fed fields in Croatia, the model underesti-

mated the maximum LAI by 4% (Vucetic, 2011). LAI was poorly simulated

for both fertilized and unfertilized maize in Canada, with normalized

RMSEs of 14 ∼ 50% and 65 ∼ 98%, respectively (Liu et al., 2014).

Guo et al. (2010) indicated that the maximum LAI was underestimated by

about 0.7 and that the mean LAI was underestimated by about 0.5 for seven

stations in China. LAI during the silking developmental stages has been

mostly poorly simulated under various treatments in Iowa, including plant-

ing dates, nitrogen application rates, fertilization rates, and population den-

sities (Lizaso et al., 2001, 2003b). The LAI at silking simulation had an

RMSE of 1.14 across severe water stress and full irrigation treatments in

Australia (Carberry et al., 1989). The RMSEs for the LAI simulations were

0.33 and 0.84 for full irrigation and limited irrigation, respectively

(DeJonge et al., 2011). The average RMSE for LAI simulation in both

dry- and irrigated-land in Kansas, US, was 0.9 (Retta et al., 1991).

However, with the maximum allowable depletion of available soil water,

30 ∼ 75%, the average RMSE for LAI simulations was 0.194 (Panda

et al., 2004). Dechmi et al. (2010) showed that early growing season LAIs

were well-simulated for low- and high-irrigation treatments but that the

maximum LAIs were underpredicted. The reported average RMSE for
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three maize hybrid LAI simulations ranged from 0.33 to 0.78 for three

sowing dates between the end of Apr. and mid-Jun. in Colorado, US

(Saseendran et al., 2005). The reported average normalized RMSE for the

maximum LAI simulation of an irrigation treatment combined with a fer-

tilization treatment in Iran was 5.22% (Moradi et al., 2013). However, others

showed that the simulations of LAI were less accurate. For a population

density treatment in Minnesota, nitrogen application in Hawaii, and in

rain-fed and irrigated fields in Florida, LAI was not well-simulated, with

RMSEs from 0.33 to 1.47 (Lizaso et al., 2003a, 2011). The RMSEs for LAI

simulations in an experimental site in Spain were 1.21, as best result (López-

Cedrón et al., 2005). Lashkari et al (2011) calculated the average RMSE for

maximum LAI simulation under planting density treatments, and the value

was 12.79 (Lashkari et al., 2011). Xevi et al. (1996) reported a normalized

RMSE of 31.9% for LAI simulation for irrigated maize in Nebraska.

3.7.2 CERES-Wheat
One study tested leaf number with nitrogen application treatments in

Arizona, US, and showed that leaf number development was reasonably

well-simulated (Thorp et al., 2010b).

Fifteen studies reported LAI validation results for the CERES-Wheat

model (Table 16). Bacsi et al. (1995) showed that LAIwas simulated reasonably

well during the course of development given a nonfertilized treatment (Bacsi

andZemankovics, 1995).However, a study inArizona,US,with various levels

of nitrogen input and planting density indicated that the predicted green LAI

did not match well with the observations (Thorp et al., 2010a). The average

difference between simulated and observed LAI ranged between 0.016 and

0.12 under various conditions, including various combinations of water avail-

ability and N:P:K ratios (Behera and Panda, 2009), seven wheat and maize

production sites in China (Guo et al., 2010), and various levels of water

availability (Panda et al., 2003). However, given 0 ∼ 4 irrigation treatments

in China, the differences between the simulated and the observed LAI were

between 0.3 and 0.6 (Yang et al., 2006b). Given various combinations of CO2

concentration and irrigation level, the normalized RMSE for simulated LAI

was 1.27% (Biernath et al., 2011). Across different planting densities, irrigation

inputs, phosphorous levels, and seeding rates in Iran, the normalized RMSE

for LAI was 8% (Bannayan et al., 2014). By contrast, across various levels of

irrigation combined with different fertilization application rates, the average

RMSEs for LAI at 32, 54, 82, and 124 days after planting were 0.1, 0.5, 0.9,

and 0.6, respectively (normalized RMSE of 25 ∼ 35%) (Arora et al., 2007).
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Table 16 Summary of the CERES-Wheat model performances for LAI simulations.

Treatment Category Countries Performance References

Irrigated with a gradient of water/different

scheduling time and well fertilized

India RMSE: 0.108

Percentage error: 1.14%

R2: 0.92

Panda et al. (2003)

New Zealand The simulated LAI did not

respond to drought factor

Jamieson et al. (1998)

China Error: 0.3 ∼ 0.6 Yang et al. (2006b)

Well irrigated and fertilized with a gradient of

fertilizer(s) only

United States Normalized RMSE: 17.9% Thorp et al. (2010b)

Well irrigated and well fertilized China Underestimated mean LAI by 0.5 Guo et al. (2010)

United States Normalized RMSE: 27.8% Thorp et al. (2012)

Irrigated with a gradient of water and fertilized

with a gradient of fertilizer(s)

India RMSE: 0.069 ∼ 0.075

R2: > 0.9

Behera and Panda (2009)

India RMSE: 0.1 ∼ 0.9

Normalized RMSE: 25 ∼ 35%

Arora et al. (2007),a

China RMSE: 0.87 (for all LAIs), 0.67

(for LAI≥3)
Normalized RMSE: 20%

Dong et al. (2013)a;

Dong et al. (2013)b;

Ji et al. (2014)

Planting density combined irrigation treatments;

phosphorous input with seeding rates

Iran Normalized RMSE: 8% Bannayan et al. (2014)

Planting densities combined with high versus low

nitrogen

United States Not accurate Thorp et al. (2010a)

CO2 concentration combined with two

irrigation treatments

Germany Normalized RMSE: 1.27% Biernath et al. (2011)

Sowing date combined with different nitrogen

input

Germany R2: 0.571 Bacsi and Zemankovics

(1995)

aTreatments included different irrigation regimes combined with fertilization regimes and four planting dates.
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Ji et al. also reported that the normalized RMSE for LAI simulation was

about 20% under varied nutrient and water input treatments in China

(Ji et al., 2014). Similarly, the normalized RMSEs were 17.9 and 27.8% for

LAI simulations under nitrogen application treatments (110.5 kg/ha vs.

241 kg N/ha) and no nutrient stress treatments, respectively, in Arizona, US

(Thorp et al., 2010b; 2012). For water availability treatments, including full

irrigation, early drought, late drought, and full drought, the CERES model

underestimated LAI for most of the treatments, and the simulated LAI did not

respond to the drought factor (Jamieson et al., 1998). Additionally,

Dong et al. (2013b) found that the CERES-Wheat model overestimated

LAI, particularly when the LAIs were less than 3. With four irrigation treat-

ments (0 ∼ 675 m3/ha) and four fertilization treatments (0 ∼ 225 kg N/ha),

Dong et al. (2013a) also reported that the RMSEs for all LAIs and LAI ≥3.0
simulations were 0.87 and 0.67, respectively.

3.7.3 CERES-Rice
Only two studies tested the LAI variable in the CERES-Rice model

(Table 17). Mall and Aggarwal (2002) used data from 32 experiments, which

consisted of planting date, planting density, spacing, irrigation, and nitrogen

application treatments, and showed that overall, the model simulated LAI well

but slightly underestimated LAI, particularly around the flowering stage.

Under irrigation and planting density treatments, the RMSEs for LAI simu-

lation were mostly under 1.3 and were 1.12 on average (Ahmad et al., 2012).

3.8 Soil Nitrogen
Soil nitrogen content and nitrate leaching prediction have been validated

for the CERES-Maize and CERES-Wheat models. No research has

Table 17 Summary of the CERES-Rice model performances for LAI simulations.

Treatment category Countries Performance References

Over 80 treatmentsa India Overall accurate but

underestimated

LAI around

flowering stage

Mall and Aggarwal

(2002)

Fertilized, irrigated

with varied amount

of water and planted

with varied densities

India RMSE: 1.08 ∼ 1.33,

Average RMSE:

1.12

Ahmad et al. (2012)

aTreatments included varied seeding and transplanting dates, planting densities, spacing, nitrogen inputs,

and irrigations.
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reported on soil nitrogen prediction validation for the CERES-Rice

model.

3.8.1 CERES-Maize
Soil nitrogen content and nitrate leaching have been tested in both contin-

uous cropping systems and rotation systems using nitrogen availability,

legume cover crop incorporation, and irrigation treatments (Table 18).

Gabrielle and Kengni (1996) simulated soil mineral nitrogen content using

the CERESmodel for five experiments at three sites over 2 years in France: a

Grenoble site with two irrigated fields, one with and one without fertiliza-

tion; a Laon site with one tilled field with canola straw removal and another

with the straw remaining; and a Grignon site with no carbon or nitrogen

input. The results showed that the simulated nitrogen for 0–90 or 0–120 cm

soil did not match the measured results and mostly underestimated soil

nitrogen content. The RMSE of nitrogen content in the 0–30 cm soil was

up to 159 kg/ha for the nonfertilized Grenoble experiment and as low as

8.5 kg/ha for the Grignon experiment. The authors also simulated nitrate

leaching for the Grenoble site. They reported that the RMSEs were 21.3 and

8.4 kg/ha for the unfertilized and fertilized experiments, respectively

(Gabrielle and Kengni, 1996). Given three levels of nitrogen input for 2 years

(20 ∼ 280 kg/ha for 1 year and 30 ∼ 270 kg/ha for the other year), the sim-

ulated nitrate leaching was significantly different from the observed leaching

(P ≤ 0.05) (Pang et al., 1998). A similar study with 0 ∼ 200 kg N/ha input

treatments in tropical Thailand indicated that the model tended to underes-

timate nitrate leaching, with a coefficient of determination of 0.86 (Asadi and

Clemente, 2003). Another study in Canada showed that themodel performed

better for soil inorganic nitrogen simulations given afertilizedmaize treatments

(normalized RMSE: 35.8 ∼ 57.1%) than unfertilized maize treatments (nor-

malized RMSE: 72 ∼ 81%) (Liu et al., 2014). Furthermore, by simulating soil

mineral nitrogen content for a year and nitrate–nitrogen loss for 3 years in both

fertilized and unfertilized plots in Canada, Liu et al. (2010) calculated that the

RMSEs for simulating soil nitrogen content at 0 ∼ 13 cm were 2 and 1.3 kg/

ha for the fertilized and the unfertilized plots, respectively, with normalized

RMSEs of 58 and 64%, respectively. They also observed a consistent overes-

timation of soil nitrate leaching through subsurface tiles for unfertilized plots,

with 160% of normalized RMSE. By comparison, in fertilized plots, the

nitrogen loss was reasonably well-simulated, with a normalized RMSE of

29% and an RMSE of 12.8 kg/ha (Liu et al., 2010). Nonetheless, nitrate

leaching was well-simulated for unfertilized plots and no-till plots in a study
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Table 18 Summary of the CERES-Maize model performances for soil nitrogen and nitrate leaching simulations.

Treatment category Variables Countries Performance References

Well irrigated and fertilized with

a gradient of fertilizer(s)

Nitrate leaching United States R2: 0.5, significantly different

from the observed (P ≤ 0.05)

Pang et al. (1998)

Canada Matched well with the

observations

Beckie et al. (1995)

Thailand R2: 0.86 Asadi and Clemente

(2003)

Hungary Close to the observed Kovacs et al. (1995)

Soil nitrogen content Hungary Close to the observed Kovacs et al. (1995)

Well irrigated and not fertilized Soil nitrogen

content, 0–30cm

France RMSE: 159 kg/ha Gabrielle and Kengni

(1996)

Soil nitrogen

content, 0–13cm

and 0–30 cm

Canada RMSE: 1.3 kg/ha

Normalized RMSE:

64 ∼ 81%

Liu et al. (2010),

Liu et al. (2014)

Nitrate leaching France RMSE: 21.3 kg/ha Gabrielle and Kengni

(1996)

Canada RMSE: 8.2 kg/ha Liu et al. (2010)

Canada Normalized RMSE: 160% Liu et al. (2010)

Well irrigated and well fertilized Soil nitrogen

content, 0–30 cm

France RMSE: 8.5 kg/ha Gabrielle and Kengni

(1996)

Soil nitrogen

content, 0–13 cm

and 0–30 cm

Canada RMSE: 2 kg/ha

Normalized RMSE:

30 ∼ 34%

Liu et al. (2010),

Liu et al. (2014)

Canada Normalized RMSE: 58% Liu et al. (2010)

Nitrate leaching France, Canada RMSE: 8.4 ∼ 12.8 kg/ha Gabrielle and Kengni

(1996); Liu et al. (2010)

Canada Normalized RMSE: 29% Liu et al. (2010)
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Irrigated with a gradient of

water and fertilized with a

gradient of fertilizer(s)

Nitrate leaching United States Difference: 10 ∼ 40 kg/ha He et al. (2011)

Corn-alfalfa-corn rotation with

and without fertilization

Nitrate leaching United States Unfertilized corn field nitrate

leaching was well simulated;

did not well simulate alfalfa

effect on nitrate leaching; did

not simulate tillage effect

either

Gerakis et al. (2006)

Wheat-maize rotation with

legume cover crop

Soil nitrogen United States Underestimated by

25 ∼ 150 kg/ha

Hasegawa et al. (2000)

Soil types Soil nitrate content United States RMSE: <8 μNO3
-/soils Garrison et al. (1999)
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of a corn-alfalfa-corn rotation field in the Midwest of the United States.

However, the model failed to simulate nitrate leaching in tilled fields and after

alfalfa growth (Gerakis et al., 2006). Beckie et al. (1995) mentioned that the

simulated nitrate leaching matched well with the observations for two wheat

fields with and without fertilization in Canada (Beckie et al., 1995).

Kovacs et al. (1995) indicated that the largest errors in nitrate leaching simulation

occurredwith unfertilized treatments. In their study,maize–wheat rotation fields

inHungarywere fertilizedwith 0, 50, 150, or 250 kg/ha of nitrogen, in addition

to phosphorus and potassium addition, and nitrate leaching was measured in

4 ∼ 5 m soils. The test results showed that over 20 years, soil nitrogen balance

and accumulative nitrate leaching simulationswere in good agreementwith field

measurements (Kovacs et al., 1995). Garrison et al. (1999) calculatedRMSEs for

soil nitrate content under fertilized maize fields with two different soils and

reported that the RMSEs were within 8 μg-NO3
�/soils. For soil nitrogen

simulation for a wheat–maize rotation with LCC incorporation cropping sys-

tems in the United States, the CERES-Maize model underestimated soil nitro-

gen by 25–150 kg N/ha in 1 year and by 25–55 kg N/ha in another year under

early LCC incorporation conditions (Hasegawa et al., 2000). For six treatments

combining three levels of nitrogen input (185 ∼ 309 kg/ha) and two levels of

irrigationwater input (irrigatingwater use depending on soilmoisture versus 1.5

times the first irrigationwater use), the CERESmodel underestimated potential

nitrate leaching for the low-nitrogen input treatment, with 10 and 31 kg/ha

error for normal and overirrigated treatment, respectively, and it overestimated

potential nitrate leaching for the higher nitrogen input treatment, with about 40

and about 10 kg/ha error for the normal- and over-irrigated treatments, respec-

tively (He et al., 2011).

3.8.2 CERES-Wheat
Five studies validated the soil nitrogenvariables of the CERES-Wheatmodel

under varied treatments and rotation systems (Table 19). Popova et al. (2005)

tested soil nitrate–nitrogen in two soil types with 200 kg N/ha input com-

binedwith a range of irrigationwater input, from 0 to 183 mm, and reported

that the coefficients of determination were 0.38 and about 0.45 for a maize

field soil nitrate simulation given nonirrigated and irrigated treatments,

respectively (Popova and Kercheva, 2005). When simulating soil nitrogen

in a wheat–maize rotation with LCC incorporation experiment,

Hasegawa et al. (2000) found that the simulated inorganic nitrogen content

in the soil was within 20% error for unfertilized fallow–wheat and wheat–

legume rotation systems. Beckie et al. (1995) also indicated that the total and
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Table 19 Summary of the CERES-Wheat model performances for soil nitrogen and plant nitrogen simulations.

Treatment category Variables Countries Performance References

Rain-fed/nonirrigated and well

fertilized

Soil nitrate-N Bulgaria Reasonably well simulated Popova and Kercheva,

(2005)

Well irrigated and fertilized with a

gradient of fertilizer(s)

Plant nitrogen

content

United States Normalized RMSE: 10.9% Thorp et al. (2010b)

Varied levels of irrigation and nitrogen Canopy nitrogen China Normalized RMSE: 20% Ji et al. (2014)

Well irrigated and well fertilized only1 Plant nitrogen

content

United States Normalized RMSE: 50.7% Thorp et al. (2012)

Rice-wheat rotation under irrigated at

different timing, fertilized with a

gradient of nitrogen and two rice

residue management regimes

(removed vs. remained)

Grain nitrogen

uptake

India RMSE: 7.8 kg/ha Sarkar and Kar (2008)

Biomass nitrogen

uptake

India RMSE: 8.4 kg/ha

Rotation systems with fertilization

treatment

Soil inorganic

nitrogen

United States Percentage error: < 20% Hasegawa et al. (2000),a

Soil nitrate Canada Absolute error: <50 kg/ha Beckie et al. (1995),b

Plant nitrogen

uptake

United States Underestimated by 66.7% Hasegawa et al. (2000)

Canada Acceptable for fertilized

treatment but heavily

underestimated by over

60 kg/ha

Beckie et al. (1995)

Wheat-maize rotation under different

nitrogen inputs

Soil nitrogen

and nitrogen

balance

Hungary Close to the field

measurement with largest

disagreement under

highest nitrogen input

treatment

Kovacs et al. (1995)

(Continued )
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Table 19 Summary of the CERES-Wheat model performances for soil nitrogen and plant nitrogen simulations.—cont'd.

Treatment category Variables Countries Performance References

Soil types Soil nitrate France RMSE: 11.6 ∼ 17.8 kg/ha Gabrielle et al. (2002)

Sowing dates combined with

population density

Plant nitrogen

content

United States RMSE: 4.5 mgN/g,

Normalized RMSE:

9 ∼ 17%

Weiss and Moreno-

Sotomayer (2006)

Sowing dates combined with different

fertilizer applications

Grain and plant

nitrogen

uptake

United States Percentage error: 0.2 ∼ 20% Bacsi and Zemankovics

(1995)

aMaize-wheat rotation followed by legume cover crop, wheat was unfertilized.
bTreatments included five wheat-fallow rotations and continuous wheat fields under fertilized versus unfertilized treatments.
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distribution of nitrate–nitrogen were well-simulated, with absolute errors

mostly under 50 kg/ha for five wheat rotation and continuous cropping

systems in two locations in Canada. In conventionally managed wheat fields

in France, the RMSEs for soil nitrate simulations ranged from 11.6 to

17.8 kg/ha, depending on soil type (Gabrielle et al., 2002). Soil nitrogen

balance and accumulative nitrate leaching were acceptably well-simulated

(Kovacs et al., 1995).

3.9 Plant Nitrogen Uptake and Plant Nitrogen Content

3.9.1 CERES-Maize
Seven studies have validated the crop nitrogen uptake or crop nitrogen

content of the CERES-Maize model given irrigation and fertilization treat-

ments in both continuous cropping and rotation systems (Table 20). Two

studies indicated that the simulated nitrogen uptake was highly correlated

with observations for nitrogen application treatments (0 ∼ 200 kg/ha) in

Thailand and nitrogen application (0 ∼ 360 kg/ha) combined with irriga-

tion (20 ∼ 100 mm) treatments in the United States. The regression lines

between the simulations and the observations had R2 values over 0.9, con-

stants of 0, and respective slopes of 1.1103 and 1.013 (Asadi and Clemente,

2003; Pang et al., 1997). Another study involving a 20 ∼ 280 kg/ha nitrogen

input gradient with a water deficit in the United States also showed the that

simulated and the observed nitrogen uptakes were not significantly different

(P≤0.05), but the difference could reach 70 kg/ha for high levels of nitrogen
application (about 280 kg/ha) (Pang et al., 1998). The simulations for leaf

nitrogen and vegetative nitrogen content in an experiment with

0 ∼ 400 kg N/ha applications in China were in agreement with the mea-

surements, with average normalized RMSEs of 23.1 and 24.7%, respectively

(Liu et al., 2012). The study of a wheat-maize rotation field with LCC

incorporation systems showed that most of the simulated maize nitrogen

uptakes were within 20% error in 1 year, but they were underestimated by

25 ∼ 70 kg/ha in another year (Hasegawa et al., 2000). For rain-fed maize in

Croatia, the grain nitrogen content and nitrogen uptake were overestimated

by 30 and 14%, respectively (Vucetic, 2011). Lizaso et al. (2011) tested

nitrogen content in shoots, leaves, and stems for varied treatments in

Florida and Iowa, US. The RMSEs for shoot nitrogen ranged from 10.2

to 32.6 kg N/ha, with an index of agreement from 0.63 to 0.978. The leaf

nitrogen concentration in the percentage simulation had small RMSEs

below 0.5% for the 0 and 56 kg N/ha application treatments but large
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Table 20 Summary of the CERES-Maize model performances for crop nitrogen uptake and crop nitrogen content variable simulations.

Treatment category Variables Countries Performance References

Rain-fed/nonirrigated and well

fertilized only

Grain nitrogen

content

Croatia Overestimated by 30% Vucetic (2011)

Nitrogen uptake Croatia Overestimated by 14% Vucetic (2011)

Well irrigated and fertilized with a

gradient of fertilizer(s) only

Nitrogen uptake Thailand R2: 0.99 Asadi and Clemente

(2003)

Leaf and vegetative

nitrogen content

China Normalized RMSE:

23 ∼ 24.7%

Liu et al. (2012)

Shoot nitrogen

content

United States Index of agreement:

0.70 ∼ 0.97

Lizaso et al. (2011)

Leaf nitrogen content Index of agreement:

0.74 ∼ 0.91

Stem nitrogen

content

Index of agreement:

0.43 ∼ 0.93

Well irrigated and well fertilized Shoot nitrogen

content

United States Index of agreement: 0.978 Lizaso et al. (2011)

Leaf nitrogen content Index of agreement: 0.614

Stem nitrogen

content

Index of agreement: 0.817

Irrigated with a gradient of water

and fertilized with a gradient of

fertilizer(s)

Nitrogen uptake United States R2: 0.946 Pang et al. (1997)

United States Not significantly different

from the observed

(P ≤ 0.05); Difference:

up to 70 kg/ha

Pang et al. (1998)
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Rain-fed/nonirrigated, well

fertilized

Shoot nitrogen

content

United States Index of agreement: 0.632 Lizaso et al. (2011)

Leaf nitrogen content Index of agreement: 0.479

Stem nitrogen content Index of agreement:

0.0.638

Maize-wheat rotation with legume

cover crop

Nitrogen uptake United States Percentage error: <20% Hasegawa et al. (2000)

Soil types combined with different

irrigation treatments

Soil nitrogen Bulgaria R2: 0.38 ∼ 0.45 Popova and Kercheva

(2005)

Wheat-maize rotation under

different nitrogen inputs

Soil nitrogen and soil

nitrogen balance

Hungary Close to the field

measurement with largest

disagreement under

highest nitrogen input

treatment

Kovacs et al. (1995)
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RMSEs of above 0.8% for high nitrogen inputs (above 116 kg N/ha appli-

cation). Regarding stem nitrogen concentration, in the percentage simula-

tion, the RMSEs were 0.521 ∼ 1.45% (Lizaso et al., 2011).

3.9.2 CERES-Wheat
Eight studies validated the nitrogen uptake variable of the CERES-Wheat

model (Table 19). Given various population density combined with sowing

date treatments in the United States, normalized RMSEs for two wheat

cultivars’ grain nitrogen concentration ranged from 9 to 17%, and the average

RMSE was 4.5 mg N/g (Weiss and Moreno-Sotomayer, 2006). Across low-

and high-nitrogen-input treatments in Arizona, the average normalized

RMSE for grain nitrogen content was 10.9% (Thorp et al., 2010b). The

average normalized RMSE for canopy nitrogen content was 20% across

various water and nutrient input rates in China (Ji et al., 2014). Across sowing

dates in late-Sep. and early- and late-Nov. in Germany, combined with large

fertilizer applications (about 230 kg N/ha) to wheat sown in Sep. and mid-

Nov. and 0 versus 213 kg N/ha fertilizer input for wheat sown in late-Nov.,

the percentage errors for crop nitrogen uptake were within 20%, and the grain

nitrogen uptake was overestimated by 0.2 ∼ 19.6% (Bacsi and Zemankovics,

1995). The simulated nitrogen uptake forwheat in a fallow-wheat rotationwas

within 20% error, but it was only about one-third of the observed midwinter

nitrogen uptake rate seen for the unfertilized wheat (Hasegawa et al., 2000).

Beckie et al. (1995) indicated that crop nitrogen uptake simulations were

acceptable for fertilized wheat but that the model heavily underestimated

nitrogen uptake for unfertilized wheat by over 60 kg N/ha. In a wheat-rice

rotation field in India, given a rice residue (removed vs. remained) and irri-

gation treatment, the nitrogen uptakes according to grain and biomass simula-

tions had RMSEs of 7.8 and 8.4 kg/ha, respectively (Sarkar and Kar, 2008).

Nonetheless, the simulation of plant nitrogen content in Arizona, US, had a

normalized RMSE of 50.7% (Thorp et al., 2012).

3.9.3 CERES-Rice
Three studies in Iran and India tested nitrogen content and nitrogen uptake

given a fertilization treatment (Table 21). In Iran, the nitrogen content in

grains and final biomass were simulated across nitrogen inputs between 0 and

75 kg/ha combined with various levels of irrigation. The RMSEs were both

9 kg/ha, and normalized RMSEs were 12 and 20%, respectively

(Amiri et al., 2013). In India, when three rice cultivars were given higher-

nitrogen-input treatments (0 ∼ 150 kg/ha), the simulated nitrogen uptake

by the grains matched reasonably well with the measurement for those
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Table 21 Summary of the CERES-Rice model performances for plant nitrogen simulations.

Treatment category Variables Countries Performance References

Irrigated with varied amount of water and

fertilized with varied nitrogen levels

Nitrogen in final

biomass

Iran RMSE: 9 kg/ha

Normalized RMSE: 20%

Amiri et al. (2013)

Nitrogen in grain RMSE: 9 kg/ha

Normalized RMSE: 12%

Well irrigated and fertilized with

a gradient of nitrogen inputs

Nitrogen uptake India Percentage error: <25% for

nitrogen input under

100 kg/ha;

Percentage error:

27 ∼ 68% for nitrogen

input of 100 ∼ 150kg/ha

Swain and Yadav

(2009)

Wheat-rice rotation, rain-fed, fertilized at

varied nitrogen rates, residue managements

and planting methods

Nitrogen in grain India RMSE: 3.59 ∼ 12.44 kg/ha Sarkar and Kar

(2008)
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nitrogen addition treatments that were less than 100 kg/ha, with less than

25% error, whereas given high nitrogen inputs of 100 and 150 kg N/ha, the

errors were 27 ∼ 68% (Swain andYadav, 2009). Another study in India tested

the grain and biomass nitrogen content for transplanted and direct-seeded

rice given wheat residue and nitrogen availability treatments. The results

showed that the averageRMSEs for transplanted and direct-seeded rice grain

nitrogen were 12.44 and 3.59 kg/ha, respectively, and that those for biomass

nitrogen were 20.78 and 15.38 kg/ha, respectively (Sarkar and Kar, 2008).

3.10 Soil Temperature
Soil temperature variable validation results have been reported only for the

CERES-Maize and CERES-Wheat models, not for the CERES-Rice

model (Table 22).

3.10.1 CERES-Maize
Four studies have validated soil temperature in the CERES-Maize model.

Hasegawa et al. (2000) monitored and simulated soil temperature in awheat-

maize rotation with legume cover crop (LCC) systems. The authors showed

that the simulated temperatures did not match well with the observations

from Jul. to harvest for maize-LCC rotation and that over half of the

simulated temperatures were 2.6 °C different from the observations; some

differences were over 10.0 °C (Hasegawa et al., 2000). Under three tillage

method treatments, the accuracy of the soil temperatures in a three-layer

(0–5 cm, 5–15 cm, and 15–30 cm) simulation varied greatly over various

years, layers, and tillage methods, with normalized RMSEs ranging between

22.5 and 49.6%. The results indicated that soil temperature was best simu-

lated under conventional tillage treatment (Liu et al., 2013). Across eight

fertilized versus unfertilized combined with irrigated versus unirrigated

treatments, the CERES model did not reproduce soil temperature at depths

of 5, 10, 20, 40, and 60 cm, with RMSEs of 4.28 °C, 5.5 °C, 6.17 °C,
6.02 °C, and 3.76 °C, respectively (Sandor and Fodor, 2012). Hodges and

Evans (1992) tested soil temperature with 4-year field experiments involving

row spacing treatments and ten hybrids and reported differences as large as

10 °C and as small as 1 ∼ 2 °C.

3.10.2 CERES-Wheat
Hasegawa et al. (2000) also tested the simulated soil temperature of the

CERES-Wheat model in wheat-maize rotation with legume cover crop

(LCC) systems. The simulated soil temperature in the 0–15 cm and
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Table 22 Summary of the CERES-Maize and CERES-Wheat model performances for soil temperature simulations.

Treatment category Performance Countries Reference Performance Countries Reference

CERES-maize CERES-wheat

Irrigated with a

gradient of water

and fertilized

with a gradient of

fertilizer(s) only

RMSE: 4.7 ∼ 6.2°C Hungary Sandor and

Fodor (2012)

Maize-wheat

rotation with

legume cover

crop

Close to the observed

through the mid-

Aug. but

overestimated by up

to 10°C in the late

season

United States Hasegawa et al.

(2000)

Overestimated by

up to 10.7°C,
13.8 °C for

0–15 cm and

15–30 cm,

respectively

United

States

Hasegawa,

et al. (2000)

Soybean-maize

rotation with

different

management

intensitya

Normalized RMSE:

22.5% ∼ 49.6%

China Liu et al. (2013)

RMSE: 3.8 ∼ 7°C China Liu et al. (2013)

Row spacing Difference: 1 ∼ 10°C United States Hodges and

Evans (1992)

aManagement intensity included conventional tillage, reduced tillage, and nontillage
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15–30 cm layers tended to be higher than those measured by up to 13.8 and

10.7 °C, respectively (Hasegawa et al., 2000).

3.11 Soil Water Content

3.11.1 CERES-Maize
Seventeen papers have tested the soil water validity of the CERES-Maize

model, and the tests have been conducted with different soils, water, and

nutrient treatments (Table 23). Gabrielle et al. (1995) reported that the mean

square error for a soil water storage simulation in three locations (one

location grew maize, and other two were bare soils) in France ranged

between 4 and 12 cm2. The results indicated that soil water storage was most

accurately simulated for well-drained soil among these three locations in

France. In Bulgaria, both soil water content and potential extractable soil

water were reasonably well-simulated for both irrigated and dry plots, with

normalized RMSEs within 4 and 19%, respectively (Popova and Kercheva,

2005). In Brazil, the normalized RMSEs for simulating soil moisture across

rain-fed and irrigated treatments were within 15% (Soler et al., 2007). In

Florida, US, the normalized RMSE for soil water content simulation during

the early growing season for the whole profile, 0–5 cm, and 5–15 cm were

35.5, 51.0, and 17%, respectively (Ritchie et al., 2009). Asadi and Clemente

(2003) reported that with four levels of nitrogen application from 0 to

200 kg/ha in Thailand, the simulated soil water content was reasonably

well-simulated, with some notable underestimations of up to 20% error.

Liu et al. (2014) reported that the normalized RMSEs for soil water content

at the 0–10 cm layer under unfertilized and fertilized treatments in Canada

ranged between 25 and 36%.With 119 data points for four types of irrigated

soils in Georgia, US, Hook et al. (1994) calculated that the model under-

estimated soil water content by an average of 5.92 mm and that the accu-

mulative absolute difference was 16.66 mm (Hook, 1994). In another US

state, soil moisture was tested in four layers (0–120 cm with 30 cm intervals)

on irrigated land as well. The results indicated that soil moistures were

generally well-simulated for each layer, with normalized RMSEs under

14.0%, except for the top, 0–30 cm, layer (normalized RMSE of 16.6%)

(Xevi et al., 1996). Anothai et al. (2013) showed that given 70%- and 100%-

full irrigation treatments, the soil water content simulation using the

Priestley–Taylor approach to ETestimation performed reasonably well (nor-

malized RMSE of 13.2 ∼ 29.0% for 0 ∼ 15 cm) in 1 year but poorly in
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Table 23 Summary of the CERES-Maize model performances for soil water and plant extractable soil water (PESW) simulations.

Treatment category Variables Countries Performance References

Rain-fed/nonirrigated

and well fertilized

Soil water content United States Percentage error: >10% DeJonge et al. (2011)

United States RMSE: 0.043 m3/m3 Saseendran et al. (2008)

Spain Not accurate López-Cedrón et al.

(2008)

Irrigated with a gradient of

water and well fertilized

Soil water content Brazil Normalized RMSE: <15% Soler et al. (2007)

United States Percentage error: <8% DeJonge et al. (2011);

Jara and Stockle (1999)

United States RMSE: 0.025 m3/m3 Saseendran et al. (2008)

Soil water content,

0–15 cm

United States Normalized RMSE:

13.2 ∼ 58.4%

Anothai et al. (2013)

Soil water content,

15–45 cm

Normalized RMSE:

12.7 ∼ 44.7%

Soil water content,

45–75 cm

Normalized RMSE:

17.2 ∼ 29.3%

Soil water content,

75–120 cm

Normalized RMSE:

9.2 ∼ 25.0%

Soil water storage China Difference: <27 mm Yang et al. (2006a)

Well irrigated and fertilized

with a gradient of

fertilizer(s)

Soil water content Thailand Underestimated by up to 20% Asadi and Clemente

(2003)

(Continued )
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Table 23 Summary of the CERES-Maize model performances for soil water and plant extractable soil water (PESW) simulations.—cont'd.

Treatment category Variables Countries Performance References

Well irrigated and well

fertilized

Soil water content,

whole profile

Bulgaria,

United States

Normalized RMSE: 4%,

35.5%

Popova and Kercheva

(2005); Ritchie et al.

(2009)

United States RMSE: 0.064 ∼ 0.073 m3/m3 Saseendran et al. (2005)

Soil water content,

30 cm-layers from soil

depth of 30–120 cm

United States Normalized RMSE: <14% Xevi et al. (1996)

Soil water content,

0–5 cm

United States Normalized RMSE: 51% Ritchie et al. (2009)

Soil water content,

5–15 cm

United States Normalized RMSE: 17% Ritchie et al. (2009)

Soil water content,

0–30 cm

United States Normalized RMSE: 16.6% Xevi et al. (1996)

PESW Bulgaria Normalized RMSE:19% Popova and Kercheva

(2005)

Soil water content,

0–10 cm

Canada Normalized RMSE:

30 ∼ 35%

Liu et al. (2014)

Not fertilized Soil water content,

0–10 cm

Canada Normalized RMSE:

25 ∼ 36%

Liu et al. (2014)

Soil types Soil water storage France Mean square error: 4 ∼ 12 cm2 Gabrielle et al. (1995)

United States Average underestimation:

5.92 mm

Hook (1994)

Management intensitya Soil water content in

each layers

United States Average RMSE:

0.042 ∼ 0.054

Garrison et al. (1999)

China RMSE: 0.01 ∼ 0.11 Liu et al. (2013)

aManagement intensity included conventional tillage, reduced conventional tillage, and nontillage.
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another year (normalized RMSE of 49.4 ∼ 58.4% for 0 ∼ 15 cm). The

authors also showed better simulations for deeper soils during both of the

growing seasons, with normalized RMSEs of 12.7 ∼ 44.7%, 17.2 ∼ 29.3%,

and 9.2 ∼ 25% for 15–45 cm, 45 ∼ 75 cm, and 75 ∼ 120 cm soils, respec-

tively (Anothai et al., 2013). Most of the study results suggested that the

simulated soil water content was acceptably matched with the observations,

but the model accuracies varied among the studies. Two studies in Colorado,

US, with a range of irrigation water treatments showed that soil water

simulations were more accurate given fully irrigated treatments. One study

reported that the relative error for soil water simulations were under 8.0% for

full-irrigation treatments and over 10.0% for limited irrigation treatment

(DeJonge et al., 2011). The other reported that the average RMSEs were

0.025 m3/m3 and 0.043 m3/m3 for soils irrigated with a 23 ∼ 188 mm

treatment and a rain-fed treatment, respectively (Saseendran et al., 2008).

Another study in Colorado involving well-irrigated and well-fertilized

treatments reported average RMSEs of 0.064 ∼ 0.073 when simulating soil

water for three maize cultivars (Saseendran et al., 2005). In Iowa, US, the

average RMSEs ranged from 0.042 to 0.054 cm3/cm3 across both tilled and

no-till experiments in two types of soils in Iowa (Garrison et al., 1999).

Garrison et al. (1999) also reported that the simulated soil storage was in

good agreement with the measurement. A study in China also showed

that given four and five irrigations per growing season, the overall errors

for soil water storage were under 27.0 mm (Yang et al., 2006a). Under

various management intensities, Liu et al. (2013) reported a wide range of

RMSEs (from 0.01 to 0.11) for 0–20 cm and 0–30 cm soil water content

simulations for various years under conventional tillage, reduced conven-

tional tillage, and nontillage treatments. They also pointed out that the

worst simulation may be due to inaccurate soil water content measurement

caused by following the gravimetric water content measurement protocol

(Liu et al., 2013). Jara and Stockle (1999) reported that the average RMSE

for soil moisture simulation across full irrigation, partial irrigation,

and no irrigation treatments in California, US, was 0.016 m3/m3, with

relative error of 7.64%. In addition, the authors noted that the CERES

model tended to underestimated soil moisture in the top 15 cm for field

experiments in bothWashington State and California. However, a graphical

comparison between simulated and measured soil water performed by

Lópz-Cedrón et al. (2008) indicated a relatively poor simulation (López-

Cedrón et al., 2008).
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3.11.2 CERES-Wheat
Twelve studies validated the soil water variable under various soils, water

availability treatments, fertilization treatments, and management intensity

treatments (Table 25). For low-permeability Vertisol soils in Bulgaria, soil

water content was more accurately simulated when the soil was fertilized

with a 200 kg N/ha treatment than when an unfertilized treatment was

applied, with normalized RMSEs of 1.3 and 4.8%, respectively (Popova

and Kercheva, 2005). The potentially extractable soil water simulation was

also more accurate given a fertilized treatment (normalizedRMSE = 13.3%)

than an unfertilized treatment (normalizedRMSE = 36.8%).With fertilized

moderately permeable Chromic Luvisol soils, the average normalized

RMSE for soil water content and potentially extractable soil water were

1.6 and 16.25%, respectively (Popova and Kercheva, 2005). A simulation

study in Austria tested the soil water content of three soils for both the whole

soil profile and at three soil depths (0–30, 0–60 and 0–90 cm). The results

indicated that the soil moisture content simulations were least accurate for

sandy Chernozem soil, with normalized RMSEs of 7.0, 3.8, 6.2, and 8.6%

for whole soil profile moisture content and soil water content at depths of 30,

60, and 90 cm, respectively, whereas those for Chernozem and fluvisol soils

were within 4.0, 1.1, 4.6, and 6.5%, respectively (Eitzinger et al., 2004). In

Argentina, across full irrigation and early drought treatments, the simulated soil

water content was correlated with the observations (R2 = 0.86) (Savin

et al., 1994). With clay and silt soils in Canada, the RMSE for soil water

content at varied layers ranged between 0.025 and 0.046 (He et al., 2014).

However, the simulatedwater content for both full-irrigation and full-drought

treatments in New Zealand did not match well with the observations, with

some heavy underestimation (Jamieson et al., 1998). Given 0 ∼ 4 irrigations

during the growing season, the differences between the simulated and

observed soil water storages were within 3% for 0 ∼ 2 irrigations, and the

largest differencewas 56 mm,which occurred given four irrigation treatments

(Yang et al., 2006a). For two-fertilizer input (110.5 and 241.0 kg N/ha)

treatments in Arizona, the soil water content validation showed that themodel

simulated deeper soil layers (normalized RMSE of 3.3 ∼ 8.7% for 30–120 cm

soil layers) better than the top soil layer (normalized RMSE of 18.9% for

0–30 cm soil) (Thorp et al., 2010b). The other soil water test under tillage

methods, including conventional moldboard plowing 40–45 cm deep, ripper

subsoiling at 60–70 cm deep, surface disc-harrowing at 15–20 cm deep, and

minimum tillage with rotary hoeing treatment, was conducted in a farm in

Italy. The revised CERES model, in which the evapotranspiration equation
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was changed and calibrated for this farm, simulated soil water fairly well, with

an average standard error of regression of 0.03 cm3/cm3. The simulated soil

water was particularly accurate for all soil layers under the ripper subsoiling

treatment, except for the 20–40 cm layer, with a linear regression slope that

was not statistically different from 1 (P < 0.1). The authors also pointed out

that under minimum tillage treatment, the simulated soilwater was close to the

measurement except for those in a drought period (Castrignano et al., 1997).

The simulated soil water storage and content in various layers were in good

agreement with the measured values for long-term agricultural experiment

sites in Canada for both continuous wheat and wheat rotation cropping

systems (Beckie et al., 1995). In another location in Canada, the simulated

soil water content was consistently smaller than the measured value for the

surface layers, but it was consistently larger than the measured value for deep

soils (Wang et al., 2010). Under fertilization treatments of 0 ∼ 112 kg/ha

nitrogen addition for 3 years, the RMSEs for soil profile moisture were within

0.074 (Saseendran et al., 2004). By comparing simulated water stress andwater

moisture monitored by sensors, Povilaitis et al. (2010) found that both the

simulated water stress and themeasured soil water content provided acceptable

soil water information regarding conventional field trials with optimum fer-

tilizer applications, integrated field trials with lower and organic fertilizer

application, and no fertilizer application field trials (Povilaitis and Lazauskas,

2010).

3.12 Evapotranspiration and Deep Seepage
The evapotranspiration variable has been validated for the CERES-Maize

and the CERES-Wheat models (Tables 24 and 25). The deep seepage of the

CERES-Wheat model has been evaluated as well. No research has reported

on the ETor deep seepage validation for the CERES-Rice model.

3.12.1 CERES-Maize
Two studies tested crop water use. Yang et al. (2006) simulated maize water

use under no irrigation versus two irrigations per growing season and

reported that water use was overestimated by 42.7 mm (0.418 mm/day)

and 67.4 mm (0.661 mm/day), respectively (Yang et al., 2006a). The other

study, in Washington, US, reported that the plant water use simulation had

normalized RMSEs of 8.95 and 6.98% for limited and full irrigation, respec-

tively (RMSEs of 0.33 and 0.27 mm/day, respectively) (Jara and Stockle,

1999).
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Table 24 Summary of the CERES-Maize model performances for crop water use and evapotranspiration (ET) simulations.

Treatment category Variables Countries Performance References

Rain-fed/nonirrigated

and well fertilized

ET United States Percentage error: >12% DeJonge et al. (2011);

DeJonge et al. (2012)

Normalized RMSE: <10% Anothai et al. (2013)

Irrigated with a gradient of

water and well fertilized

ET Italy, Turkey,

Pakistan

Percentage error:

2.3 ∼ 7.64%

R2: 0.78

Mastrorilli et al. (2003);

Ben Nouna et al. (2000);

Gercek and Okant (2010);

Mubeen et al. (2013)

Crop water

use

United States RMSE: 0.27 ∼ 0.33

Normalized RMSE:

7 ∼ 9%

Jara and Stockle (1999)

China Overestimated by

42.7 ∼ 67.4 mm

Yang et al. (2006)a

Sowing date ET United States RMSE: 3.7 ∼ 5.1 cm Saseendran et al. (2005)
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Table 25 Summary of the CERES-Wheat model performances for soil water, plant extractable soil water (PESW) and evapotranspiration (ET)
simulations.

Treatment category Variables Countries Performance References

Rain-fed and well

fertilized

Soil water loss China Error: 1 cm Yang et al. (2006b)

Irrigated with a gradient

of water/different

scheduling time and

well fertilized

Soil water loss China Error: 13 ∼ 43 cm Yang et al. (2006b)

Soil water

content

Argentina R2: 0.86 Savin et al. (1994)

New Zealand Did not match well Jamieson et al. (1998)

China Percentage error: <3%

difference up to 56 mm

Yang et al. (2006a)

United States Normalized RMSE: <10% for

layers below 30cm, 18.9% for

0–30 cm layer

Thorp et al. (2010b)

ET New Zealand Difference: 9 ∼ 60 mm Jamieson et al. (1998)

Well irrigated and

fertilized at varied rates

ET United States Normalized RMSE: 2.4% Thorp et al. (2010b)

Well irrigated and

fertilizeda
ET United States, China Normalized RMSE: <3% Kang et al. (2009)

Irrigated and fertilized at

varied rates

ET India, China RMSE: 25 mm

Normalized RMSE: 4 ∼ 9%

Arora et al. (2007)

Ji et al. (2014)

Rain-fed and varied

amount of fertilizer(s)

Soil water

content

United States RMSE: <0.074 Saseendran et al. (2004)

ET United States RMSE: 9.2 ∼ 13.5 mm Saseendran et al. (2004)
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Table 25 Summary of the CERES-Wheat model performances for soil water, plant extractable soil water (PESW) and evapotranspiration (ET)
simulations.—cont'd.

Treatment category Variables Countries Performance References

Soil types Soil water

content

Bulgaria, Australia,

Canada

Normalized RMSE: 1.3 ∼ 9%

RMSE: 0.025 ∼ 0.046

Popova and Kercheva

(2005),b; Eitzinger

et al. (2004); He et al.

(2014)

PESW Bulgaria Normalized RMSE: 13.3 ∼ 36.8% Popova and Kercheva

(2005)

ET Australia Overestimated by 61 ∼ 87 mm Eitzinger et al. (2004)

Tillage methodsc Soil water Italy Standard error of regression: 0.03 Castrignano et al. (1997)

Wheat-fallow and

continuous wheat

under different

fertilization rate

Soil water

levels

Canada Accurate for 0–30 cm layers with

<1 m error, significantly different

for most 60–150 cm layers

(P=0.05, 0.01)

Beckie et al. (1995)

Soil water

content

Canada R2 <0.64 Wang et al. (2010)

CO2 concentrations with

two irrigation regimes

ET United States Normalized RMSE: <14% Tubiello et al. (1999b)

Planting densities

combined with varied

fertilization rates

ET United States Difference: 19 ∼ 33 mm Thorp et al. (2010a)

aLiteratures that did not include treatments were considered as “well irrigated and well fertilized”;
bTreatments included soil types combined with different fertilization rate treatments.
cIncluding conventional moldboard ploughing, ripper subsoiling, surface disc-harrowing, and minimum tillage with rotary hoeing.
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For ET simulation validation, two studies in Colorado, US, reported ET

simulations that had percentage errors under 7.5% for full-irrigation treat-

ment and over 12.0% for limited irrigation treatment (DeJonge et al., 2011,

2012).When simulating ET given three levels of irrigation water treatments,

from nonwater-stress to severe water stress, the model predicted seasonal ET

well for all three levels, with zero error under nonwater-stress conditions, up

to 3.5% underestimation under moderate water stress conditions, and up to

7.64% under severe water stress condition (Ben Nouna et al., 2000;

Mastrorilli et al., 2003). A similar ET simulation for a 2-year experiment

with three levels of irrigation, 100%-, 75%-, and 50%-full, showed that the

percentage errors were about 3.0%, 2.3%-5.1%, and above 3.7%, respectively

(Gercek and Okant, 2010). In Pakistan, across seven irrigation treatments of

varying amounts and timings, the coefficients of determination between the

simulated and observed ETs were above 0.78 (Mubeen et al., 2013). Across

six irrigation treatments in Colorado, US, the average normalizedRMSE for

ET simulation was within 10%, with an index of agreement above 0.9

(Anothai et al., 2013). With well-irrigated and sowing date treatments, the

ET simulations had RMSEs of 3.7 ∼ 5.1 cm, depending on the hybrids

involved (Saseendran et al., 2005).

3.12.2 CERES-Wheat
Ten studies tested the ETof the CERES-wheat model under varying water

availability treatments, CO2 concentrations, nutrient application treatments,

and soils (Table 25). Arora et al. (2007) tested the seasonal ETwith 5-year data

collected from field experiments with varying water regimens (eg, irrigation

timing at irrigation water-to-pan evaporation ratios of 1.2, 1.0, and 0.6 after

sowing and 1–2 irrigations after sowing) combined with nutrient application

regimens (eg, 0–180 kg N/ha, 120 kg N/ha applied at various timings, etc.).

They reported that across all the field treatments, the simulated ET had an

average RMSE of 25 mm, equivalent to a 9% normalized RMSE

(Arora et al., 2007). Yang et al. (2006b) showed that the simulated soil water

loss was close to that observed under no irrigation treatment (error: 1 cm),

but the simulation did not match well with the observations given a four-

irrigation treatment (error: 43 cm). A similar study in China in which wheat

fields were irrigated zero to four times showed that the soil water content was

mostly well-simulated (percentage error: <3%), but at the end of the grow-

ing seasons, the soil water simulation errors ranged up to 56 mm

(Yang et al., 2006a). Across nine treatments with various levels of nutrient

and water input in China, the normalized RMSE for the ET simulation was
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between 4 and 7% (Ji et al., 2014). By contrast, Jamieson et al. (1998)

reported that given weekly irrigation treatment, the total ETwas under-

estimated by 135 mm, while under no irrigation treatment, it was

overestimated by 60 mm. The authors also indicated that for total ET

simulations under early drought and late drought treatments, the absolute

errors mostly ranged from 9 to 17 mm, with one exception of 51 mm

(Jamieson et al., 1998). When simulating cumulative ET under treatments

combining CO2 concentration (ambient vs. 550 ppm) and irrigation (well-

watered vs. water deficit), the normalized RMSEs were within 14%

(Tubiello et al., 1999b). With nutrient applications of 0 ∼ 112 kg N/ha

for 3 years, the simulated seasonal ET had RMSEs from 9.2 to 13.5 cm

(Saseendran et al., 2004). With 110.5 and 241.0 kg N/ha application treat-

ments, the normalized RMSE was 2.4% (Thorp et al., 2010b). The authors

also noticed that the model did not simulate deep seepage, as opposed to

the approximately 30 mm of seepage that were measured (Thorp

et al., 2010b). Another study in Arizona, with various nitrogen input

and population density treatments, showed that the difference between

the simulated and observed ET varied from 1.9 to 3.3 cm given a sparse

planting and high nitrogen input treatment (Thorp et al., 2010a). One

study in Austria tested ETwith field experiments on three types of soils.

The results indicated that the model overestimated the seasonal ET for

the three types of soil by 61 ∼ 87 mm (Eitzinger et al., 2004). Kang

et al. (2009) used multiple seasons of wheat field data from two sites in

China and the United States to validate the ET calculated by the

Priestley–Taylor and Penman equations. The authors reported that the

average RMSEs were 2.1 and 2.5 mm (these are either mm/day or mm/

season), respectively (Kang et al., 2009).

3.13 Other Variables

3.13.1 CERES-Maize
Rezzoug et al. (2008) reported that the simulation of number of years per square

meter the variable had anRMSDof 74.21 and amean absolute percentage error

of 29.66%. Popova et al. (2005) compared the simulated and the measured

accumulative drainage graphically, and the results indicated that the simulated

drainagewas underestimated for an irrigatedmaize field in Bulgaria (Popova and

Kercheva, 2005). Lizaso et al. (2001, 2003a,b) used two datasets from different

sites in Iowa with different treatments to test the intercepted photosynthetically

active radiation (IPAR) variable. Comparing the simulated IPAR to the
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observed IPAR under two extreme nitrogen rates (0 vs. 224 kg N/ha)

combined with different maize hybrids, planting dates, and population

density treatments, the authors reported that the IPAR was overestimated,

especially for the nonnitrogen application treatment (Lizaso et al., 2001).

Using 72 data points from experiments on irrigated maize fields with

varying population densities, hybrids, and nitrogen application rates (56

vs. 168 kg N/ha) and nonirrigated maize fields with varying population

densities and hybrids, the authors also found that IPAR was overestimated,

with a mean error of 0.41 MJ/plant and an RMSE of 0.75 MJ/plant

(Lizaso et al., 2003b). In Australia, Carberry (1991) tested the thermal time

of the CERES-Maize model and showed that the observed temperature for

leaf tip appearance was 48.3 °C, as opposed to the 38.9 °C simulated by the

model. Two studies compared simulated irrigation water use to historical

irrigation water use records. Salazar et al. (2012) reported that the simulated

monthly irrigation water use was in close agreement with the historical

record for the South Georgia, US, region, but there was a notable overes-

timation for early growing seasons when rainfall was not abundant. The

study of a wheat-maize rotation field in the North China Plain showed that

the simulated highest and lowest water use of the irrigated wheat matched

with the records, and for the 5-year simulation, the average difference was

12 mm. When simulating the rotation irrigation water use by two crops,

the average difference was 6.1 mm, and the absolute differences for each

year ranged between 0 and 69 mm (Yang et al., 2006a).

Two studies in the United States and Turkey calculated and tested the

water productivity variable. DeJonge et al. (2012) reported that the simula-

tion was reasonably accurate for full irrigation (RMSD of 3.45 kg/ha per

mm and underestimated by 6.53%), but much less accurate for limited

irrigation (RMSD of 5.97 kg/ha per mm and underestimated by 26.7%)

in a water-use efficiency simulation. By contrast, the similar study in Turkey

found that water use efficiency was under-predicted by 1.5% under full

irrigation conditions while it was overpredicted by 1.4 and 1.7% for 75%-

and 50%-full irrigation treatments, respectively (Gercek and Okant, 2010).

3.13.2 CERES-Wheat
Zhang et al. (2012) compared the simulated and observed cumulative

frequency distributions of the optimal nitrogen rate in Oklahoma, US,

for 37 years and reported that the optimum nitrogen application rates

were well-simulated when nitrogen application was under 67 kg/ha,

underestimated for 67 and 90 kg N/ha treatments, and overestimated
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for 90 and 112 kg N/ha treatments. Water use efficiency and nitrogen

partial factor productivity were validated with varied water and nitrogen

input treatments in China, and the normalized RMSEs were 5 ∼ 8 and

5 ∼ 6%, respectively (Ji et al., 2014).

3.13.3 CERES-Rice
With a fertilization treatment of 0 ∼ 150 kg/ha at various timings in

Thailand, Cheyglinted et al. (2001) calculated the grain-straw ratio and

reported that the relative absolute percentage errors for the ratio between

grain and straw simulations were 21 ∼ 32%.
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